Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical substitution solvent effect

The enthalpy changes associated with proton transfer in the various 4, -substituted benzophenone contact radical ion pairs as a function of solvent have been estimated by employing a variety of thermochemical data [20]. The effect of substituents upon the stability of the radical IP were derived from the study of Arnold and co-workers [55] of the reduction potentials for a variety of 4,4 -substituted benzophenones. The effect of substituents upon the stability of the ketyl radical were estimated from the kinetic data obtained by Creary for the thermal rearrangement of 2-aryl-3,3-dimethylmethylenecyclopropanes, where the mechanism for the isomerization assumes a biradical intermediate [56]. The solvent dependence for the energetics of proton transfer were based upon the studies of Gould et al. [38]. The details of the analysis can be found in the original literature [20] and only the results are herein given in Table 2.2. [Pg.82]

The data compiled in Tables 6.15 and 6.16 indicate how a selection of methods perform in determining reaction barriers for methyl radical additions to a series of substituted alkenes. The experimental values with which comparisons are made in Tables 6.15 - 6.20 come from experiments in solution [40, 42, 45, 46] so there is the possibility of non-negligible solvent effects in some instances. [Pg.182]

Partial fluorination of 4-arylthio-l,3-dioxolan-2-ones occurs preferentially at the carbon atom adjacent to the thio group [67]. However, a remarkable solvent effect is encountered. In the more polar solvent, dimethoxyethane substitution occurs, while in the less polar dichloromethane a larger portion of the desulfurization with cleavage of the phenylthio group takes place. This is attributed to the fact that the intermediate radical cation is more stable in the polar solvent and undergoes deprotonation, while in the less polar solvent, the less stabilized radical cation dissociates into a dioxolane cation and a phenylthio radical. [Pg.407]

Short-lived organic radicals, electron spin resonance studies of, 5, 53 Small-ring hydrocarbons, gas-phase pyrolysis of, 4, 147 Solid state, tautomerism in the, 32, 129 Solid-state chemistry, topochemical phenomena in, 15, 63 Solids, organic, electrical conduction in, 16, 159 Solutions, reactions in, entropies of activation and mechanisms, 1, 1 Solvation and protonation in strong aqueous acids, 13, 83 Solvent effects, reaction coordinates, and reorganization energies on nucleophilic substitution reactions in aqueous solution, 38, 161 Solvent, protic and dipolar aprotic, rates of bimolecular substitution-reactions in,... [Pg.409]

Substitutions by the SRn 1 mechanism (substitution, radical-nucleophilic, unimolecular) are a well-studied group of reactions which involve SET steps and radical anion intermediates (see Scheme 10.4). They have been elucidated for a range of precursors which include aryl, vinyl and bridgehead halides (i.e. halides which cannot undergo SN1 or SN2 mechanisms), and substituted nitro compounds. Studies of aryl halide reactions are discussed in Chapter 2. The methods used to determine the mechanisms of these reactions include inhibition and trapping studies, ESR spectroscopy, variation of the functional group and nucleophile reactivity coupled with product analysis, and the effect of solvent. We exemplify SRN1 mechanistic studies with the reactions of o -substituted nitroalkanes (Scheme 10.29) [23,24]. [Pg.287]

Solvation of thiolates is similarly low in both protic and dipolar aprotic solvents because of the size and polarisability of the large weakly basic sulfur atom, so is unlikely to contribute appreciably to the observed solvent effect. The intermediate nitro radical anion is stabilised by H-bonding in a manner which retards its dissociation in the SrnI mechanism (upper equation in Scheme 10.35). In contrast, the electron flow in the direct substitution at X (lower equation in Scheme 10.35) is such that solvation by methanol promotes the departure of the nucleofuge. In summary, protic solvation lowers the rate of the radical/radical anion reactions, but increases the rate of the polar abstraction yielding disulfide. [Pg.291]

Another noticeable characteristic of captodative olefins is the influence of the reaction medium. The stabilizing effect of solvent on the persistency of a captodatively radical has been reported experimentally for the bond homolysis of bis(3,5,5-trimethyl-2-oxomorpholin-3-yl) [111], but was not found for the 2,3-diphenyl-2,3-dimethoxysuccinonitrile homolysis [112]. Theoretically the solvent-assisted stabilization las been predicted for the captodative substituted nitriles in solvent with large dielectric constants [113-114], Table 16 illustrates the solvent effect on the spontaneous thermal polymerizations [115]. The polymer yields are... [Pg.88]

In nonpolar solvents, exciplex formation is usually favored because of a small AG, and a favorable Coulombic term. The ions are likely to remain in intimate contact for a longer time, i.e., ion pairing is effective because of favorable Coulombic and solvent effects. That dissociation into solvent-separated is not likely for exciplexes formed in nonpolar solvents has been shown by extensive studies dealing with the photochemical additions of donor and acceptors. Reactions via exciplexes or CIP s frequently yield cycloadducts, whereas in polar solvents, coupling via substitution of radical ion pairs and other chemical reactions involving solvated radical ions may predominate [12]. [Pg.35]

Polymerization of butane-1,4-diol dimethacrylate, sensitized by benzophenone in the presence of three different sulfides, has been described by Andrzejewska et al. [190]. The measurements show that in the absence and in the presence of propyl sulfide and 2,2 -thiobisethanol no polymer was formed. This can be explained by the effective back electron transfer process that occurs in the radical-ion pair in organic solvents. Effective polymerization was observed only in the presence of TMT. Laser flash photolysis studies performed for the benzophenone-TMT pair allow one to construct a scheme (Scheme 23) explaining characteristic features of the mechanism of polymerization initiated by the system. The results prompted the authors to study other symmetrically substituted 1,3,5-trithianes as electron donors for benzophenone-sensitized free-radical polymerization (Figure 38 Table 12) [191]. [Pg.3739]

As mentioned above, bromine substituents promote the diaryl ether formation, while iodine substitutions prefer to produce diaryls. The ab initio calculations indicate that the O-radicals are stable in bromo derivatives, in contrary to the C-radicals in the iodo derivative, although solvent effects were not taken into consideration. Accordingly, the... [Pg.1164]

Table 3.1 shows the effect of solvent polarity on four different nucleophilic substitution reactions. Creation or destruction of charge gives the biggest effects spreading or dispersal of charge as in the second and third examples in the table gives smaller effects. Molecular and radical reactions do not involve charge build-up in the transition state, and are little affected by solvents thus a check for the presence or absence of a solvent effect often allows a distinction to be made between radical or molecular mecha-... [Pg.48]


See other pages where Radical substitution solvent effect is mentioned: [Pg.620]    [Pg.116]    [Pg.238]    [Pg.73]    [Pg.120]    [Pg.145]    [Pg.117]    [Pg.71]    [Pg.220]    [Pg.150]    [Pg.104]    [Pg.157]    [Pg.151]    [Pg.123]    [Pg.293]    [Pg.208]    [Pg.211]    [Pg.3781]    [Pg.30]    [Pg.792]    [Pg.431]    [Pg.792]    [Pg.163]    [Pg.225]    [Pg.36]    [Pg.407]    [Pg.432]    [Pg.34]   
See also in sourсe #XX -- [ Pg.765 ]




SEARCH



Radical effective

Radicals 3-substituted

Radicals effects

Radicals solvent effects

Solvent effects substitution

Solvent substitution

Substitution radical

© 2024 chempedia.info