Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitro compounds substitution

Condensed imidazoles are formed in excellent yield when aromatic nitro compounds, substituted in the ortho position with an N-heteroparaffinic substituent, are cyclized using various reducing agents such as metal oxalates, iron pentacarbonyl, triethylphos-phite,113 or titanous chloride.114 The same reaction takes place under... [Pg.126]

It should be noted that only representative substances are indicated in the above list. Substituted derivatives of the compounds in most classes may be encountered, e.g., nitrobenzoic acid in the aromatic carboxylic acids (p. 347). This acid will contain CH(0)N, but the salient properties are still those of a carboxylic acid, CH(0), Section 14, although the properties of an aromatic nitro-compound (e.g.y reduction to an amino-compound) will also be evident. [Pg.406]

The imides, primaiy and secondary nitro compounds, oximes and sulphon amides of Solubility Group III are weakly acidic nitrogen compounds they cannot be titrated satisfactorily with a standard alkaU nor do they exhibit the reactions characteristic of phenols. The neutral nitrogen compounds of Solubility Group VII include tertiary nitro compounds amides (simple and substituted) derivatives of aldehydes and ketones (hydrazones, semlcarb-azones, ete.) nitriles nitroso, azo, hydrazo and other Intermediate reduction products of aromatic nitro compounds. All the above nitrogen compounds, and also the sulphonamides of Solubility Group VII, respond, with few exceptions, to the same classification reactions (reduction and hydrolysis) and hence will be considered together. [Pg.1074]

Nitration is important for two reasons firstly, because it is the most general process for the preparation of aromatic nitro compounds secondly, because of the part which it has played in the development of theoretical organic chemistry. It is of interest because of its own characteristics as an electrophilic substitution. [Pg.1]

In nitration with nitronium salts in sulpholan, nitrobenzene was substituted in the following proportions 8% ortho, 90% meta and 2% paraf under the same conditions benzylidyne trifluoride yielded 8%, 88% and 4% of 0-, m- and p-nitro compound respectively Both of these aromatic compounds were stated to be io -10 times less reactive than benzene. "... [Pg.68]

Comparison of data for the nitration of alkyl- and halogenobenzenes with those for the related p-nitro-compounds supports the view that the rate of nitration of highly electron-deficient systems is determined by polarizability factors which enhance the reactivity of the substituted by comparison with that of the unsubstituted system. [Pg.186]

Allylic nitro compounds form rr-allylpalladium complexes by displacement of the nitro group and react with nucleophiles, and allylation with the tertiary nitro compound 202 takes place at the more substituted side without rearrangement to give 203[8,9,128]. [Pg.317]

Michael condensations are catalyzed by alkaU alkoxides, tertiary amines, and quaternary bases and salts. Active methylene compounds and aUphatic nitro compounds add to form P-substituted propionates. These addition reactions are frequendy reversible at high temperatures. Exceptions are the tertiary nitro adducts which are converted to olefins at elevated temperatures (24). [Pg.151]

In the examples, a nitro group is substituted for a hydrogen atom, and water is a by-product. Nitro groups may, however, be substituted for other atoms or groups of atoms. In Victor Meyer reactions which use silver nitrite, the nitro group replaces a hahde atom, eg, I or Br. In a modification of this method, sodium nitrite dissolved in dimethyl formamide or other suitable solvent is used instead of silver nitrite (1). Nitro compounds can also be produced by addition reactions, eg, the reaction of nitric acid or nitrogen dioxide with unsaturated compounds such as olefins or acetylenes. [Pg.32]

A nitro alcohol is formed when an ahphatic nitro compound with a hydrogen atom on the nitro-bearing carbon atom reacts with an aldehyde in the presence of a base. Many such compounds have been synthesized, but only those formed by the condensation of formaldehyde (qv) and the lower nitroparaffins (qv) are marketed commercially. The condensation may occur one to three times, depending on the number of hydrogen atoms on the nitro-substituted carbon (R and R = H or alkyl), and yield nitro alcohols with one to three hydroxyl groups. [Pg.60]

Condensation ofDianhydrides with Diamines. The preparation of polyetherknides by the reaction of a diamine with a dianhydride has advantages over nitro-displacement polymerization sodium nitrite is not a by-product and thus does not have to be removed from the polymer, and a dipolar aprotic solvent is not required, which makes solvent-free melt polymerization a possibiUty. Aromatic dianhydride monomers (8) can be prepared from A/-substituted rutrophthalimides by a three-step sequence that utilizes the nitro-displacement reaction in the first step, followed by hydrolysis and then ring closure. For the 4-nitro compounds, the procedure is as follows. [Pg.334]

Nucleophilic aromatic substitutions involving loss of hydrogen are known. The reaction usually occurs with oxidation of the intermediate either intramoleculady or by an added oxidizing agent such as air or iodine. A noteworthy example is the formation of 6-methoxy-2-nitrobenzonitrile from reaction of 1,3-dinitrobenzene with a methanol solution of potassium cyanide. In this reaction it appears that the nitro compound itself functions as the oxidizing agent (10). [Pg.39]

The localization energies for electrophilic substitution in benzimidazole predict that all three reactive forms should undergo substitution in the 4-position. This does not explain the formation of the 5-nitro compound or that of the 2-deutero compound. It is doubtful whether any electrophilic substitution occurs preferentially in the 4-position. [Pg.7]

A 4-nitro-l, 2-methylenedioxybenzene has been cleaved to a catechol with 2 N NaOH, 90°, 30 min a similar compound substituted with a 4-nitro or 4-formyl group has been cleaved by NaOCH3/DMSO, 150°, 2.5 min (13-74% catechol, 6-60% recovered starting material). ... [Pg.171]

A mechanism of this type permits substitution of certain aromatic and ahphatic nitro compounds by a variety of nucleophiles. These reactions were discovered as the result of efforts to explain the mechanistic basis for high-yield carbon alkylation of the 2-nitropropane anion by p-nitrobenzyl chloride. p-Nitrobenzyl bromide and iodide and benzyl halides that do not contain a nitro substituent give mainly the unstable oxygen alkylation product with this ambident anion ... [Pg.727]

The unique feature of the SrnI reactions of substituted alkyl nitro compounds is the facility with which carbon-carbon bonds between highly branched centers can be formed. This point is illustrated by several of the examples in Scheme 12.7. [Pg.730]

Chloro- and 5-methylbenzofuroxans are readily nitrated in the 4-position the product rearranges easily to form 7-substituted 4-nitro compounds (see Section VIII), also obtained by nitration of the corresponding 4-substituted benzofuroxans. Dinitration of 5-methylbenzofuroxan is said to give a product of m.p. 133°, while the 4-methyl gives a dinitro compound m.p. 122°-123°. For other benzofuroxans to have been nitrated see refs. 19, 36, 81, 97,121. There appears to be some confusion over the site of electrophilic substitution of naphtho[l,2-c]furoxan. Early reports in the literature state that nitration gives the 5,6-dinitro derivative (47). However, sulfona-... [Pg.24]

Tire use of nitro synthons for the preparation of nitronaphthyridines and their derivatives has been extensively studied and has found widespread application. Most known nitro compounds have been synthesized using these methods and nearly all of them use an aminopyridine or (substituted amino)pyri-dine as starting material for the construction of the nitronaphthyridine ring. Tliese synthetic methods can be divided into four categories. [Pg.287]

The required nitro compounds are easy to prepare, and are useful building blocks for synthesis. Treatment with an appropriate base—e.g. aqueous alkali—leads to formation of nitronates 2. Various substituted nitro compounds, such as nitro-ketones, -alcohols, -esters and -nitriles are suitable starting materials. [Pg.211]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

Arylisoxazol-5(4//)-oncs 21 react with benzene-1,2-diamines to yield 4-aryl-l,5-benzodiaze-pinones 22 by elimination of hydroxylamine from the intermediate oximes. Unsymmetrically substituted benzene-1,2-diamines are attacked at the more nucleophilic amino group. Thus, 4-methylbenzene-1,2-diamine gives 7-methylbenzodiazepinones 22f-h, whereas 4-nitrobenzene-1,2-diamine gives 8-nitro compounds 22k-n. The benzodiazepinones are accompanied by minor amounts of 2-methylbenzimidazoles 23. Selected examples are given.275... [Pg.423]


See other pages where Nitro compounds substitution is mentioned: [Pg.413]    [Pg.478]    [Pg.1444]    [Pg.206]    [Pg.413]    [Pg.478]    [Pg.1444]    [Pg.206]    [Pg.28]    [Pg.186]    [Pg.199]    [Pg.199]    [Pg.257]    [Pg.258]    [Pg.469]    [Pg.287]    [Pg.49]    [Pg.81]    [Pg.48]    [Pg.145]    [Pg.259]    [Pg.480]    [Pg.158]    [Pg.158]    [Pg.163]    [Pg.319]    [Pg.65]    [Pg.338]    [Pg.37]    [Pg.562]   
See also in sourсe #XX -- [ Pg.667 ]




SEARCH



Nitro compounds aromatic, nucleophilic substitution

Nitro compounds halogen-substituted aromatic, reduction

Substituted Compounds

Substitution compounds

Substitution reactions nitro compounds as reactants

© 2024 chempedia.info