Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution Organic chemistry

Hydrazine and its alkylated derivatives are used as rocket fuels in organic chemistry, substituted phenylhydrazines are important in the characterisation of sugars and other compounds, for example aldehydes and ketones containing the carbonyl group C=0. [Pg.224]

Organic chemistry demands much from chlorine, both as an oxidizing agent and in substitution, since it often brings many desired properties in an organic compound when substituted for hydrogen, as in one form of synthetic rubber. [Pg.42]

Nitration is important for two reasons firstly, because it is the most general process for the preparation of aromatic nitro compounds secondly, because of the part which it has played in the development of theoretical organic chemistry. It is of interest because of its own characteristics as an electrophilic substitution. [Pg.1]

The development of theoretical organic chemistry was intimately entwined with the development of that particular aspect of it concerned with aromatic substitution the history of this twin growth has been authoritatively traced. Only the main developments, particularly as they affect nitration, will be noted here. [Pg.3]

For the electronic theory of organic chemistry 1926 was the annus mirabilis, and, particularly, as they applied to aromatic substitution, the... [Pg.3]

Substitutive names are preferred but functional class names are sometimes more convenient or more familiar and are frequently encountered m organic chemistry... [Pg.145]

Section 8 1 Nucleophilic substitution is an important reaction type m synthetic organic chemistry because it is one of the mam methods for functional group transformations Examples of synthetically useful nucleophilic sub stitutions were given m Table 8 1 It is a good idea to return to that table and review its entries now that the details of nucleophilic substitution have been covered... [Pg.355]

We call this reaction electrophihc aromatic substitution, it is one of the fundamental processes of organic chemistry... [Pg.473]

In computational chemistry it can be very useful to have a generic model that you can apply to any situation. Even if less accurate, such a computational tool is very useful for comparing results between molecules and certainly lowers the level of pain in using a model from one that almost always fails. The MM+ force field is meant to apply to general organic chemistry more than the other force fields of HyperChem, which really focus on proteins and nucleic acids. HyperChem includes a default scheme such that when MM+ fails to find a force constant (more generally, force field parameter), HyperChem substitutes a default value. This occurs universally with the periodic table so all conceivable molecules will allow computations. Whether or not the results of such a calculation are realistic can only be determined by close examination of the default parameters and the particular molecular situation. ... [Pg.205]

In organic chemistry there are many important molecules that contain two or more groups each of which, in isolation, would be chiral. A simple example is that of 2,3-difluorobutane, shown in Figure 4.9. The molecule can be regarded as a substituted ethane and we assume that, as in ethane itself, the stable sttucture is one in which one CFIFCFI3 group is staggered relative to the other. [Pg.80]

The derivatives of the aminophenols have important uses both in the photographic and the pharmaceutical industries. They are also extensively employed as precursors and intermediates in the synthesis of more compHcated molecules, especially those used in the staining and dye industry. All of the major classes of dyes have representatives that incorporate substituted aminophenols these compounds produced commercially as dye intermediates have been reviewed (157). Details of the more commonly encountered derivatives of the aminophenols can be found in standard organic chemistry texts (25,158). A few examples, which have specific uses or are manufactured in large quantities, are discussed in detail in the following (see Table 6). [Pg.313]

Dyestuff organic chemistry is concerned with designing molecules that can selectively absorb visible electromagnetic radiation and have affinity for the specified fiber, and balancing these requirements to achieve optimum performance. To be colored the dyestuff molecule must contain unsaturated chromophore groups, such as a2o, nitro, nitroso, carbonyl, etc. In addition, the molecule can contain auxochromes, groups that supplement the chromophore. Typical auxochromes are amino, substituted amino, hydroxyl, sulfonic, and carboxyl groups. [Pg.351]

Heteroeyeles structurally based on the phenalene ring system form an interesting elass, frequently possessing distinetive eolours. With nitrogen as the central atom we have the unstable 9b-azaphenalene (24), whieh has only fairly reeently been prepared and is still comparatively little studied (76JCS(Pl)34l). The cyclazine nomenclature is commonly applied to this and related compounds thus, (24) is (3.3.3)cyclazine. With further aza substitution, in positions alternant to the central atom, their stability increases the heptaazaphenalene (25) is (thermally) a very inert compound, derivatives of which, e.g. the triamine, have been known since the early days of organic chemistry (see Chapter 2.20). [Pg.3]

One of the most important and general trends in organic chemistry is the increase in carbocation stability with additional alkyl substitution. This stability relationship is fundamental to imderstanding many aspects of reactivity, especially of nucleophilic... [Pg.277]

In the first century of "organic" chemistry much attention was given to the structures of carbogens and their transformations. Reactions were classified according to the types of substrates that underwent the chemical change (for example "aromatic substitution," "carbonyl addition," "halide displacement," "ester condensation"). Chemistry was taught and learned as transformations characteristic of a structural class (e.g. phenol, aldehyde) or structural subunit... [Pg.5]

Substitutive names are prefened, but functional class nanes are sometimes more convenient or more ffflniliar and are frequently encountered in organic chemistry. [Pg.145]

Carey Organic Chemistry, I 8. Nucleophilic Fifth Edition Substitution... [Pg.343]

Hiickel models of molecular electronic structure enjoyed many years of popularity, particularly the r-electron variants. Authors sought to extract the last possible amount of information from these models, perhaps because nothing more refined was technically feasible at the time. Thus, for example, the inductive effect was studied. The inductive effect is a key concept in organic chemistry a group R should show a - -1 or a —I effect (according to the nature of the group R) when it is substituted into a benzene ring. [Pg.135]

N-Substituted pyridinium salts are important synthetic reagents in many fields of organic chemistry, as evidenced by several comprehensive reviews that deal with their chemistry and reactions [53AG605 62AG811 63AG181 ... [Pg.182]

Although there are comprehensive reviews and various specialized publications available covering the field of oxazole and specially thiazole chemistry, this does not apply to the selenazoles. This class of compounds has been treated in a few paragraphs and then only in a few works on organic chemistry. The reason for this is, principally, because in this field so far there has been less work and, correspondingly, a relatively small number of substituted selenazoles are known. Thus the parent compound, selenazole itself, is still unknown, all attempts to synthesize it having failed. [Pg.343]

Nucleophilic substitution of the halogen atom of halogenomethylisoxazoles proceeds readily this reaction does not differ essentially from that of benzyl halides. One should note the successful hydrolysis of 4-chloromethyl- and 4-(chlorobenzyl)-isoxazoles by freshly precipitated lead oxide, a reagent seldom used in organic chemistry. Other halides, ethers, and esters of the isoxazole series have been obtained from 3- and 4-halogenomethylisoxazoles, and 3-chloro-methylisoxazole has been reported in the Arbuzov rearrangement. Panizzi has used dichloromethylisoxazole derivatives to synthesize isoxazole-3- and isoxazole-5-aldehydes/ ... [Pg.393]


See other pages where Substitution Organic chemistry is mentioned: [Pg.569]    [Pg.205]    [Pg.3]    [Pg.240]    [Pg.167]    [Pg.329]    [Pg.809]    [Pg.896]    [Pg.979]    [Pg.22]    [Pg.436]    [Pg.163]    [Pg.311]    [Pg.21]    [Pg.308]    [Pg.218]    [Pg.225]    [Pg.167]    [Pg.329]    [Pg.809]    [Pg.979]    [Pg.93]    [Pg.314]    [Pg.46]    [Pg.300]    [Pg.307]    [Pg.2]   
See also in sourсe #XX -- [ Pg.108 , Pg.110 , Pg.186 , Pg.192 , Pg.204 ]




SEARCH



Chemistry substitutional

Organic substitutes

Substitution chemistry

© 2024 chempedia.info