Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject limitations

Limits on emissions are both subjective and objective. Subjective limits are based on the visual appearance or smell of an emission. Objective limits are based on physical or chemical measurement of the emission. The most common form of subjective limit is that which regulates the optical density of a stack plume, measured by comparison with a Ringelmann chart (Fig. 25-1). This form of chart has been in use for over 90 years and is widely accepted for grading the blackness of black or gray smoke emissions. Within the past four decades, it has been used as the basis for "equivalent opacity" regulations for grading the optical density of emissions of colors other than black or gray. [Pg.408]

The precise subject limits must be ascertained not only to prevent needless work, but also to sharpen the final result. While it may seem self-evident that amorphous searches, rambling over unwanted territory, are inferior to those that bring out only essential points, unfortunately searches and especially bibliographies, made in lieu of searches, often err on this point. [Pg.3]

Experimental plants in which operations have been conducted in stationary bombs with media ideally operated valves have been run at Hccringen and Neuremherg, Cier-many. The mechanical strains to which the a[iparatus is subjected limit the developments. In its present state af develnpmc-iit this priicess canimt congie e successfully with Other processes for the fixatian of atmospheric uitragen. [Pg.19]

This article presents methods of synthesis and objective control of special flat optical elements (computer-synthesized holograms) as elements of protection. Due to the limited number of pages, we cannot go into great detail to explain the technology of how computer-synthesized holograms are created. The goal of this publication is to discuss following subjects ... [Pg.264]

During take-off and landing, the wheels of modem aircraft are subject to great stress. New high-performance brake systems and aggressive environmental influences push the wheels closer and closer to their limit. These conditions as well as increased requirements for safety and quality control now necessitate that wheels are tested much more comprehensively than in the past. [Pg.305]

The first of them to determine the LMA quantitatively and the second - the LF qualitatively Of course, limit of sensitivity of the LF channel depends on the rope type and on its state very close because the LF are detected by signal pulses exceeding over a noise level. The level is less for new ropes (especially for the locked coil ropes) than for multi-strand ropes used (especially for the ropes corroded). Even if a skilled and experienced operator interprets a record, this cannot exclude possible errors completely because of the evaluation subjectivity. Moreover it takes a lot of time for the interpretation. Some of flaw detector producers understand the problem and are intended to develop new instruments using data processing by a computer [6]. [Pg.335]

Certain types of equipment are specifically excluded from the scope of the directive. It is self-evident that equipment which is already regulated at Union level with respect to the pressure risk by other directives had to be excluded. That is the case with simple pressure vessels, transportable pressure equipment, aerosols and motor vehicles. Other equipment, such as carbonated drink containers or radiators and piping for hot water systems are excluded from the scope because of the limited risk involved. Also excluded are products which are subject to a minor pressure risk which are covered by the directives on machinery, lifts, low voltage, medical devices, gas appliances and on explosive atmospheres. A further and last group of exclusions refers to equipment which presents a significant pressure risk, but for which neither the free circulation aspect nor the safety aspect necessitated their inclusion. [Pg.941]

The influence of electrical charges on surfaces is very important to their physical chemistry. The Coulombic interaction between charged colloids is responsible for a myriad of behaviors from the formation of opals to the stability of biological cells. Although this is a broad subject involving both practical application and fundamental physics and chemistry, we must limit our discussion to those areas having direct implications for surface science. [Pg.169]

This chapter on adsorption from solution is intended to develop the more straightforward and important aspects of adsorption phenomena that prevail when a solvent is present. The general subject has a vast literature, and it is necessary to limit e presentation to the essential features and theory. [Pg.390]

This chapter concludes our discussion of applications of surface chemistry with the possible exception of some of the materials on heterogeneous catalysis in Chapter XVIII. The subjects touched on here are a continuation of Chapter IV on surface films on liquid substrates. There has been an explosion of research in this subject area, and, again, we are limited to providing just an overview of the more fundamental topics. [Pg.537]

Numerical solution of this set of close-coupled equations is feasible only for a limited number of close target states. For each N, several sets of independent solutions F.. of the resulting close-coupled equations are detennined subject to F.. = 0 at r = 0 and to the reactance A-matrix asymptotic boundary conditions,... [Pg.2049]

Computer simulations act as a bridge between microscopic length and time scales and tlie macroscopic world of the laboratory (see figure B3.3.1. We provide a guess at the interactions between molecules, and obtain exact predictions of bulk properties. The predictions are exact in the sense that they can be made as accurate as we like, subject to the limitations imposed by our computer budget. At the same time, the hidden detail behind bulk measurements can be revealed. Examples are the link between the diffiision coefficient and... [Pg.2239]

Apart from the techniques described in this chapter other methods of organic film fonnation are vacuum deposition or film fonnation by allowing a melt or a solution of the material to spread on the substrate and subsequently to solidify. Vacuum deposition is limited to molecules with a sufficiently high vapour pressure while a prerequisite for the latter is an even spreading of the solution or melt over the substrate, which depends on the nature of the intennolecular forces. This subject is of general relevance to the fonnation of organic films. [Pg.2609]

The carriers in tire channel of an enhancement mode device exhibit unusually high mobility, particularly at low temperatures, a subject of considerable interest. The source-drain current is carried by electrons attracted to tire interface. The ionized dopant atoms, which act as fixed charges and limit tire carriers mobility, are left behind, away from tire interface. In a sense, tire source-drain current is carried by tire two-dimensional (2D) electron gas at tire Si-gate oxide interface. [Pg.2892]

Consequently, Eqs. (43) and (59) are identical, for applications in a 3D parameter space, except that the vector product in the former is expressed as a commutator in the latter. Both are computed as diagonal elements of combinations of strictly off-diagonal operators and both give gauge independent results. Equally, however, both are subject to the limitations with respect to the choice of surface for the final integration that are discussed in the sentence following Eq. (43). [Pg.17]

This section attempts a brief review of several areas of research on the significance of phases, mainly for quantum phenomena in molecular systems. Evidently, due to limitation of space, one cannot do justice to the breadth of the subject and numerous important works will go unmentioned. It is hoped that the several cited papers (some of which have been chosen from quite recent publications) will lead the reader to other, related and earlier, publications. It is essential to state at the outset that the overall phase of the wave function is arbitrary and only the relative phases of its components are observable in any meaningful sense. Throughout, we concentrate on the relative phases of the components. (In a coordinate representation of the state function, the phases of the components are none other than the coordinate-dependent parts of the phase, so it is also true that this part is susceptible to measurement. Similar statements can be made in momentum, energy, etc., representations.)... [Pg.101]

Materials that contain defects and impurities can exhibit some of the most scientifically interesting and economically important phenomena known. The nature of disorder in solids is a vast subject and so our discussion will necessarily be limited. The smallest degree of disorder that can be introduced into a perfect crystal is a point defect. Three common types of point defect are vacancies, interstitials and substitutionals. Vacancies form when an atom is missing from its expected lattice site. A common example is the Schottky defect, which is typically formed when one cation and one anion are removed from fhe bulk and placed on the surface. Schottky defects are common in the alkali halides. Interstitials are due to the presence of an atom in a location that is usually unoccupied. A... [Pg.638]


See other pages where Subject limitations is mentioned: [Pg.220]    [Pg.85]    [Pg.549]    [Pg.207]    [Pg.549]    [Pg.538]    [Pg.1397]    [Pg.1]    [Pg.1]    [Pg.220]    [Pg.85]    [Pg.549]    [Pg.207]    [Pg.549]    [Pg.538]    [Pg.1397]    [Pg.1]    [Pg.1]    [Pg.85]    [Pg.242]    [Pg.721]    [Pg.946]    [Pg.101]    [Pg.208]    [Pg.4]    [Pg.8]    [Pg.830]    [Pg.2226]    [Pg.2257]    [Pg.2487]    [Pg.2825]    [Pg.2853]    [Pg.2]    [Pg.98]    [Pg.55]    [Pg.240]    [Pg.301]    [Pg.110]    [Pg.118]    [Pg.176]    [Pg.213]    [Pg.358]    [Pg.475]   
See also in sourсe #XX -- [ Pg.367 ]




SEARCH



Limiting processes Subject

Rayleigh limit 516 Subject

Subject analytical limits

Subject maximum residue limits

© 2024 chempedia.info