Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject kinetic applications

This concludes a discussion of exactly solvable second-order processes. As one can see, only a very few second-order cases can be solved exactly for their time dependence. The more complicated reversible reactions such as 2Apt C seem to lead to very complicated generating functions in terms of Lame functions and the like. This shows that even for reasonably simple second- and third-order reactions, approximate techniques are needed. This is not only true in chemical kinetic applications, but in others as well, such as population and genetic models. The actual models in these fields are beyond the scope of this review, but the mathematical problems are very similar. Reference 62 contains a discussion of many of these models. A few of the approximations that have been tried are discussed in Ref. 67. It should also be pointed out at this point that the application of these intuitive methods to chemical kinetics have never been justified at a fundamental level and so the results, although intuitively plausible, can be reasonably subject to doubt. [Pg.165]

There have been few discussions of the specific problems inherent in the application of methods of curve matching to solid state reactions. It is probable that a degree of subjectivity frequently enters many decisions concerning identification of a best fit . It is not known, for example, (i) the accuracy with which data must be measured to enable a clear distinction to be made between obedience to alternative rate equations, (ii) the range of a within which results provide the most sensitive tests of possible equations, (iii) the form of test, i.e. f(a)—time, reduced time, etc. plots, which is most appropriate for confirmation of probable kinetic obediences and (iv) the minimum time intervals at which measurements must be made for use in kinetic analyses, the number of (a, t) values required. It is also important to know the influence of experimental errors in oto, t0, particle size distributions, temperature variations, etc., on kinetic analyses and distinguishability. A critical survey of quantitative aspects of curve fitting, concerned particularly with the reactions of solids, has not yet been provided [490]. [Pg.82]

Electroless deposition as we know it today has had many applications, e.g., in corrosion prevention [5-8], and electronics [9]. Although it yields a limited number of metals and alloys compared to electrodeposition, materials with unique properties, such as Ni-P (corrosion resistance) and Co-P (magnetic properties), are readily obtained by electroless deposition. It is in principle easier to obtain coatings of uniform thickness and composition using the electroless process, since one does not have the current density uniformity problem of electrodeposition. However, as we shall see, the practitioner of electroless deposition needs to be aware of the actions of solution additives and dissolved O2 gas on deposition kinetics, which affect deposit thickness and composition uniformity. Nevertheless, electroless deposition is experiencing increased interest in microelectronics, in part due to the need to replace expensive vacuum metallization methods with less expensive and selective deposition methods. The need to find creative deposition methods in the emerging field of nanofabrication is generating much interest in electroless deposition, at the present time more so as a useful process however, than as a subject of serious research. [Pg.226]

A discussion of the applicability of the MPT model to a particular electroless system ideally presumes knowledge of the kinetics and mechanisms of the anodic and cathodic partial reactions, and experimental verification of the interdependence or otherwise of these reactions. However, the study of the kinetics, catalysis, and mechanistic aspects of electroless deposition is an involved subject and is discussed separately. [Pg.230]

Despite H/D kinetic isotope studies, application of modern techniques such as atomic force microscopy (AFM), electrochemical mass spectrometry (EMS) [60], and electrochemical quartz microbalance (EQCM), the mechanism of electroless nickel and cobalt, whatever reducing agent is involved, continues to be the subject of much discussion and varying opinions. [Pg.240]

Thus, electrochemical data involving both thermodynamic and kinetic parameters of hydrocarbons are available for only olefinic and aromatic jr-systems. The reduction of aromatics, in particular, had already attracted much interest in the late fifties and early sixties. The correlation between the reduction potentials and molecular-orbital (MO) energies of a series of aromatic hydrocarbons was one of the first successful applications of the Hiickel molecular orbital (HMO) theory, and allowed the development of a coherent picture of cathodic reduction [1], The early research on this subject has been reviewed several times [2-4],... [Pg.95]

In summary, computational quantum mechanics has reached such a state that its use in chemical kinetics is possible. However, since these methods still are at various stages of development, their routine and direct use without carefully evaluating the reasonableness of predictions must be avoided. Since ab initio methods presently are far too expensive from the computational point of view, and still require the application of empirical corrections, semiempirical quantum chemical methods represent the most accessible option in chemical reaction engineering today. One productive approach is to use semiempirical methods to build systematically the necessary thermochemical and kinetic-parameter data bases for mechanism development. Following this, the mechanism would be subjected to sensitivity and reaction path analyses for the determination of the rank-order of importance of reactions. Important reactions and species can then be studied with greatest scrutiny using rigorous ab initio calculations, as well as by experiments. [Pg.111]

In general, surface morphological instabilities driven by stresses are an important subject to investigate in connection with microelectronic applications. In particular, the degree of surface waviness in thin films as a consequence of surface and volume diffusion is a matter of pivotal importance. This topic has attracted considerable attention in the last two or so decades (11). Although surface diffusion is an important kinetic process, other kinetic processes may affect the evolution of stressed surfaces. Indeed, a possibility at high temperatures is the diffusion of atoms through the bulk. [Pg.317]

Fe(5N02phen)3] + aquation in ternary water-Bu OH-polyethyleneglycol (PEG400). " Kinetic patterns for systems of these types have been the subject of theoretical analyses, as in the application of the Savage-Wood Group Additivity principle to [Fe(5N02phen)3f" " aquation in a variety of water-rich binary aqueous mixtures and in aqueous salt solutions " and in the Kirkwood-Buff treatment of preferential solvation of initial and transition states for [Fe(phen)3] + aquation in methanol-water " and for [Fe(gmi)3] " " aquation in Bu OH + water. " ... [Pg.447]

This chapter provides a general discussion of kinetics versus thermodynamics, chemical kinetics versus geochemical kinetics, and an overview of the basics of various kinetic processes and applications. Subsequent chapters will provide in-depth development of theories and applications of specific subjects. The purpose of the overview in this chapter is to provide the big picture of the whole field before in-depth exploration of the topics. Furthermore, this chapter is a standalone chapter that may be used in a general geochemistry course to introduce kinetics to students. [Pg.3]


See other pages where Subject kinetic applications is mentioned: [Pg.427]    [Pg.21]    [Pg.716]    [Pg.24]    [Pg.31]    [Pg.35]    [Pg.88]    [Pg.40]    [Pg.255]    [Pg.143]    [Pg.103]    [Pg.520]    [Pg.124]    [Pg.36]    [Pg.115]    [Pg.177]    [Pg.599]    [Pg.437]    [Pg.150]    [Pg.416]    [Pg.38]    [Pg.661]    [Pg.137]    [Pg.426]    [Pg.171]    [Pg.213]    [Pg.858]    [Pg.73]    [Pg.56]    [Pg.169]    [Pg.30]    [Pg.378]    [Pg.300]    [Pg.205]    [Pg.190]    [Pg.318]    [Pg.9]    [Pg.265]    [Pg.122]    [Pg.691]    [Pg.7]   
See also in sourсe #XX -- [ Pg.465 ]




SEARCH



Kinetic applications

Kinetics application

Subject application

Subject kinetics

© 2024 chempedia.info