Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject cations

Materials that contain defects and impurities can exhibit some of the most scientifically interesting and economically important phenomena known. The nature of disorder in solids is a vast subject and so our discussion will necessarily be limited. The smallest degree of disorder that can be introduced into a perfect crystal is a point defect. Three common types of point defect are vacancies, interstitials and substitutionals. Vacancies form when an atom is missing from its expected lattice site. A common example is the Schottky defect, which is typically formed when one cation and one anion are removed from fhe bulk and placed on the surface. Schottky defects are common in the alkali halides. Interstitials are due to the presence of an atom in a location that is usually unoccupied. A... [Pg.638]

Although most nonionic organic chemicals are subject to low energy bonding mechanisms, sorption of phenyl- and other substituted-urea pesticides such as diuron to sod or sod components has been attributed to a variety of mechanisms, depending on the sorbent. The mechanisms include hydrophobic interactions, cation bridging, van der Waals forces, and charge-transfer complexes. [Pg.221]

Eor instance, exhaust appHcation is possible with cationic finishes which have an affinity for the anionic groups in polymeric materials. After appHcation, the textile is dried. Durable antistatic finishes require cross-linking of the resin. Cross-linking is usually achieved by subjecting the treated, dried material to heat curing. A catalyst is often incorporated to accelerate insolubilization. [Pg.294]

Trifluoromethylpteridine and its 7-methyl and 6,7-dimethyl derivatives (69JCS(C)l75l) are, as expected, even more subject to hydration. The first two are essentially completely hydrated across the 3,4-double bond at equilibrium in neutral solution and the last is partly hydrated. On dissolution of 4-trifluoromethylpteridine in aqueous acid the 5,6,7,8-dihy-drated cation is the main product initially, rearranging more slowly to the thermodynamically more stable 3,4-hydrate. [Pg.266]

The triarylmethyl cations are particularly stable because of the conjugation with the aryl groups, which delocalizes the positive charge. Because of their stability and ease of generation, the triarylmethyl cations have been the subject of studies aimed at determining the effect of substituents on carbocation stability. Many of these studies used the characteristic UV absorption spectra of the cations to determine their concentration. In acidic solution, equilibrium is established between triarylearbinols and the corresponding carbocations. [Pg.277]

Another feature of systems that are subject to B-strain is their reluctance to form strained substitution products. The cationic intermediates usually escape to elimination products in preference to capture by a nucleophile. Rearrangements are also common. 2-Methyl-2-adamantyl p-nitrobenzoate gives 82% methyleneadamantane by elimination and 18% 2-methyl-2-adamantanol by substitution in aqueous acetone. Elimination accounts for 95% of the product from 2-neopentyl-2-adaman l p-nitrobenzoate. The major product (83%) from 2-r-butyl-2-adamantyl p-nitrobenzoate is the rearranged alkene 5. [Pg.300]

Interpretation of tiie ratio of capture of competing nucleophiles has led to the estimate that bromonium ions have lifetimes on the order of 10 s in methanol. This lifetime is about 100 times longer than fliat for secondary caibocations. There is also direct evidence for the existence of bromonium ions. The bromonium ion related to propene can be observed by NMR spectroscopy when l-bromo-2-fluoropropane is subjected to superacid conditions. The terminal bromine adopts a bridging position in the resulting cation. [Pg.363]

The factors that determine whether syn or anti elimination predominates are still subject to investigation. One factor that is believed to be important is whether the base is free or present in an ion pair. The evidence is that an ion pair promotes syn elimination of anionic leaving groups. This effect can be explained by proposing a transition state in which the anion functions as a base and the cation assists in the departure of the leaving group. [Pg.390]

While generation of a Mn(V)oxo salen intermediate 8 as the active chiral oxidant is widely accepted, how the subsequent C-C bond forming events occur is the subject of some debate. The observation of frans-epoxide products from cw-olefins, as well as the observation that conjugated olefins work best support a stepwise intermediate in which a conjugated radical or cation intermediate is generated. The radical intermediate 9 is most favored based on better Hammett correlations obtained with o vs. o . " In addition, it was recently demonstrated that ring opening of vinyl cyclopropane substrates produced products that can only be derived from radical intermediates and not cationic intermediates. ... [Pg.32]

The reactivity of the methyl group in 4-methylcinnoline ethiodide indicates that the structure of this compound is 5, and this evidence has also been interpreted to mean that N-1 is the basic group in cinnolines. However, evidence of this type is only indicative since the formation of quaternary salts is subject to kinetic control, whereas protonation yields predominantly the thermodynamically more stable cation. The quinazoline cation has been shown to exist in the hydrated, resonance-stabilized form 6 7 by ultraviolet spectro-... [Pg.341]

Cations are more subject to ring-opening than are neutral species or anions. Thus ring-opening (slow) has been observed in the cations but not in the neutral species of 1,3,5-, 1,3,7-, and 1,3,8-triazanaph-thalene at 20° it is followed by further degradation. 1,3,6-Triaza-naphthalene decomposes much faster than its isomers in acidic solution, but follows the usual sequence, 47 49,... [Pg.39]

As the alkaloid was extracted with hexane, acetone, and ethanol, subjected to column chromatography, acidified (AcOH) and then neutralized (NaOH), the cationic form was formulated as a hydroxide salt. However, only two OH groups were detectable on H NMR spectroscopy. Only slight differences were found in the UV spectra taken in methanol [kmax (loge) = 218 (4.68), 302 (4.39), 394 (4.08) nm] and methanol+NaOH [T-max (loge) = 228 (4.66), 310 (4.39) nm]. Three tautomeric forms can be formulated which are shown in Scheme 42. Two of them possess the isoquinolium-7-olate moiety. The H NMR data are presented in Table IV. They indeed unambiguously resemble the cationic species 112. [Pg.107]

The choice of the anion ultimately intended to be an element of the ionic liquid is of particular importance. Perhaps more than any other single factor, it appears that the anion of the ionic liquid exercises a significant degree of control over the molecular solvents (water, ether, etc.) with which the IL will form two-phase systems. Nitrate salts, for example, are typically water-miscible while those of hexaflu-orophosphate are not those of tetrafluoroborate may or may not be, depending on the nature of the cation. Certain anions such as hexafluorophosphate are subject to hydrolysis at higher temperatures, while those such as bis(trifluoromethane)sulfonamide are not, but are extremely expensive. Additionally, the cation of the salt used to perform any anion metathesis is important. While salts of potassium, sodium, and silver are routinely used for this purpose, the use of ammonium salts in acetone is frequently the most convenient and least expensive approach. [Pg.35]

It should also be noted that terms such as high temperature and low temperature are also subjective, and depend to a great extent on experimental context. If we exclusively consider ionic liquids to incorporate an organic cation, and further limit the selection of salts to those that are liquid below 100 °C, a large range of materials are still available for consideration. [Pg.41]

In the present chapter, we will start to briefly summarize all the aspects of this subject, which have been covered in previous specialized reviews, allowing for a broad and general discussion on the subject. Then we will focus on the chemical modification of PS in the presence of cationic catalysts. [Pg.259]

The majority of the literature reports deal with the reaction of calixarenes with Group I and II cations. Polymeric calixarenes have been the subject of a more recent innovation. Harris et al. [23] have prepared a calix[4]ar-ene methacrylate, its polymerization, and Na complex-ation (Scheme 3). They concluded that both monomers and polymers form stable complexes with sodium thiocyanate. [Pg.341]

Electrode materials with a spinel-type structure, A[B2]X4, have become the subject of intensive research over the past 10 years. This interest is partly due to the fact that many spinel compounds exist in nature, and are therefore intrinsically stable materials. Furthermore, the family of spinels encompasses a vast number of compositions because it is possible to vary not only the type and valency of the A and B cations within the A[B2]X4 structure, but also the type and valency of the X ani-... [Pg.307]

Compounds of the form RN2 X are named by adding the suffix -diazonium to the name of the parent compound RH, the whole being followed by the name of X- (Rule C-931.1, e.g., methanediazonium tetrafluoroborate, benzenediazonium chloride, not phenyldiazonium). Following RC- 82.2.2.3 (IUPAC, 1993), diazonium ions may also be named structurally on the basis of the parent cation diazenylium HNJ, e.g., benzenediazenylium ion. We name the substituent — NJ diazonio (not diazonium) following the same rule. Diazonio describes both mesomeric structures — N = N and — N = N. If one wants to describe one of these structures only, diazyn-l-ium-l-yl or diazen-2-ylium-l-yl has to be used for -N = N or -N = N, respectively. In the General Subject Index of Chemical Abstracts and in Beilstein, diazonium compounds as a class are indexed under this heading. [Pg.5]

The significantly lower dediazoniation rate of the l/f-3,5-dimethylpyrazole-4-di-azonium ion (8.22) compared with that of the benzenediazonium ion was the central subject of an MNDO study by Brint et al. (1985). The diazonium ion 8.22 has been recovered unchanged after heating for 3 h at 100 °C in aqueous hydrochloric acid. It is not completely decomposed after a similar treatment for 48 h (Reilly and Madden, 1925). Brint et al. calculated the heats of formation of this diazonium ion and of the corresponding heteroaryl cation 8.23 (Scheme 8-16). They found that the values of A//f for the diazonium ion 8.22 and for the benzenediazonium ion are almost identical, whereas that for the cation 8.23 is much greater. The energy required to dissociate the pyrazolediazonium ion is therefore nearly twice that required for the benzenediazonium ion (A//f = 329 and 194 kJ mol-1, respectively). [Pg.179]


See other pages where Subject cations is mentioned: [Pg.142]    [Pg.180]    [Pg.143]    [Pg.47]    [Pg.47]    [Pg.167]    [Pg.251]    [Pg.333]    [Pg.3]    [Pg.16]    [Pg.8]    [Pg.294]    [Pg.329]    [Pg.382]    [Pg.374]    [Pg.382]    [Pg.1]    [Pg.1049]    [Pg.250]    [Pg.20]    [Pg.167]    [Pg.2]    [Pg.24]    [Pg.333]    [Pg.208]    [Pg.85]    [Pg.1045]    [Pg.3]    [Pg.25]    [Pg.201]    [Pg.92]    [Pg.233]   
See also in sourсe #XX -- [ Pg.41 , Pg.42 , Pg.44 ]




SEARCH



Allyl cations Subject

Cationic polymerisation Subject

Subject cationic polymers

Subject molecular cations

© 2024 chempedia.info