Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrenic triblock copolymers thermoplastic elastomer based

The convenience of this technique has led to the development of many commercial products, including thermoplastic elastomers based on triblocks of styrene, butadiene, and isoprene. The initiator used in these systems is based on hydrocarbon-soluble organolithium initiators. In some cases, a hydrocarbon-soluble dilithio initiator has been employed in the preparation of multiblock copolymers. Several techniques are used to prepare thermoplastic elastomers of the ABA type. All these are discussed in detail in Chapter 2. A short summary of these techniques is given here. [Pg.536]

FIGURE 13.8 Schematic illustration of phase separation in a thermoplastic elastomer based on a styrenic triblock copolymer such as SBS. The isolated spherical domains containing the polystyrene end blocks form the hard phase, which acts as both intermolecular tie point ("physical crosslinks ) and filler. The continuous phase from the polybutadiene midblock imparts the elastomeric characteristics to this polymer. [Pg.606]

Butadiene copolymers are mainly prepared to yield mbbers (see Styrene-butadiene rubber). Many commercially significant latex paints are based on styrene—butadiene copolymers (see Coatings Paint). In latex paint the weight ratio S B is usually 60 40 with high conversion. Most of the block copolymers prepared by anionic catalysts, eg, butyUithium, are also elastomers. However, some of these block copolymers are thermoplastic mbbers, which behave like cross-linked mbbers at room temperature but show regular thermoplastic flow at elevated temperatures (45,46). Diblock (styrene—butadiene (SB)) and triblock (styrene—butadiene—styrene (SBS)) copolymers are commercially available. Typically, they are blended with PS to achieve a desirable property, eg, improved clarity/flexibiHty (see Polymerblends) (46). These block copolymers represent a class of new and interesting polymeric materials (47,48). Of particular interest are their morphologies (49—52), solution properties (53,54), and mechanical behavior (55,56). [Pg.507]

Z. Fodor and R. Faust, Polyisobutylene-based thermoplastic elastomers. IV. Synthesis of poly (styrene-block-isobutylene-block-styr-ene) triblock copolymers using n-butyl chloride as solvent, J. Macromol. Sci.-Chem., 33(3) 305-324, March 1996. [Pg.182]

The discovery of living cationic polymerization has provided methods and technology for the synthesis of useful block copolymers, especially those based on elastomeric polyisobutylene (Kennedy and Puskas, 2004). It is noteworthy that isobutylene can only be polymerized by a cationic mechanism. One of the most useful thermoplastic elastomers prepared by cationic polymerization is the polystyrene-f -polyisobutylene-(>-polystyrene (SIBS) triblock copolymer. This polymer imbibed with anti-inflammatory dmgs was one of the first polymers used to coat metal stents as a treatment for blocked arteries (Sipos et al., 2005). The SIBS polymers possess an oxidatively stable, elastomeric polyisobutylene center block and exhibit the critical enabling properties for this application including processing, vascular compatibility, and biostability (Faust, 2012). As illustrated below, SIBS polymers can be prepared by sequential monomer addition using a difunctional initiator with titanium tetrachloride in a mixed solvent (methylene chloride/methylcyclohexane) at low temperature (-70 to -90°C) in the presence of a proton trap (2,6-dt-f-butylpyridine). To prevent formation of coupled products formed by intermolecular alkylation, the polymerization is terminated prior to complete consumption of styrene. These SIBS polymers exhibit tensile properties essentially the same as those of... [Pg.97]

The ABA triblocks which have been most exploited commercially are of the styrene-diene-styrene type, prepared by sequential polymerization initiated by alkyllithium compounds as shown in Eqs. (99-101) [263, 286]. The behavior of these block copolymers illustrates the special characteristics of block (and graft) copolymers, which are based on the general incompatibility of the different blocks [287]. Thus for a typical thermoplastic elastomer (263), the polystyrene end blocks (-15,000-20,000 MW) aggregate into a separate phase, which forms a microdispersion within the matrix composed of the polydiene chains (50,000-70,000 MW) [288-290]. A schematic representation of this morphology is shown in Fig. 3. This phase separation, which occurs in the melt (or swollen) state, results, at ambient temperatures, in a network of... [Pg.93]

Fully methacrylic triblocks, containing a central rubbery poly(alkyl acrylate) block and two peripheral hard poly(alkyl methacrylate) blocks, are potential substitutes for the traditional styrene-diene-based thermoplastic elastomers (TPEs), which have relatively low service temperatures. Fully methacrylic triblock copolymers are able to cover service temperatures due to the varying Tg from — 50 C (poly(isooctyl acrylate)) to 190 C (poly (isobornyl methacrylate) [210]. Poly(methyl methacrylate)-Z)-poly(n-butyl acrylate)-Z)-poly(methyl methacrylate) triblock copolymers, which are precursors for poly(methyl methacrylate)- -poly(alkyl acrylate)-Z)-poly(methyl methacrylate) via selective transalcoholysis, have been synthesized by a three-step sequential polymerization of MMA, ferf-butyl acrylate (t-BuA), and MMA in the presence of LiCl as stabilizing ligand [211,212]. Various diblock copolymers, such as poly(methyl methacrylate)-Z)-poly( -butyl acrylate) and poly(methyl methacrylate)-Z)-poly( -nonyl acrylate), have been synthesized... [Pg.267]

The growing importance of thermoplastic elastomers is clearly evident from the papers presented at this Symposium. The majority of papers on elastomer synthesis deal with these types of block copolymers. The papers by Quirk and Tung describe the triblock copolymers based on -methylstyrene-butadiene and styrene-a-methylstyrene-diene systems, respectively. Anionic block copolymerization of hexamethyl- and hexaphenylcyclotrisiloxane is discussed in the paper (not included in this book) by Ibemesi, Gvozdic, Keumin, Lynch and Meier,... [Pg.15]


See other pages where Styrenic triblock copolymers thermoplastic elastomer based is mentioned: [Pg.810]    [Pg.28]    [Pg.472]    [Pg.44]    [Pg.30]    [Pg.639]    [Pg.116]    [Pg.94]    [Pg.4736]    [Pg.7873]    [Pg.231]    [Pg.690]   
See also in sourсe #XX -- [ Pg.606 ]




SEARCH



Copolymers triblock

Elastomers styrene-based

Elastomers styrenics

Styrene elastomers

Styrene thermoplastic elastomers

Styrene triblock copolymers

Styrene-based Copolymers

Styrene-copolymers

Styrenic thermoplastic elastomers

Thermoplastic copolymers

Thermoplastic elastomers

Thermoplastic styrenics

Triblock

© 2024 chempedia.info