Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene resistivity

Figure 12. Sensitivity curve for 0.8 im thick chlorinated poly(styrene) resist exposed at 248 nm and developed for 21 mins, by O2 RIE. Figure 12. Sensitivity curve for 0.8 im thick chlorinated poly(styrene) resist exposed at 248 nm and developed for 21 mins, by O2 RIE.
Figure 24. SEM of poly(TTF-styrene) resist patterns produced by exposure (10 pC/cm2) to 20 kV electrons. (Reproduced by permission from Ref. 145.)... Figure 24. SEM of poly(TTF-styrene) resist patterns produced by exposure (10 pC/cm2) to 20 kV electrons. (Reproduced by permission from Ref. 145.)...
A vinyl ester tooling gelcoat offering excellent styrene resistance over many moulding cycles. M-820 EX-1... [Pg.100]

The annual production of styrene in the United States is approximately 1 2 X 10 lb with about 65% of this output used to prepare polystyrene plastics and films Styrofoam coffee cups are made from polystyrene Polystyrene can also be produced m a form that IS very strong and impact resistant and is used widely m luggage television and radio cabinets and furniture... [Pg.449]

The principal monomer of nitrile resins is acrylonitrile (see Polyacrylonitrile ), which constitutes about 70% by weight of the polymer and provides the polymer with good gas barrier and chemical resistance properties. The remainder of the polymer is 20 to 30% methylacrylate (or styrene), with 0 to 10% butadiene to serve as an impact-modifying termonomer. [Pg.1017]

Amberlite IRA-93 1.3 1.04 Styrene-DVB pH range is 0 to 9. Excellent resistance to oxidation and organic foul-... [Pg.1113]

Styrene—acrylonitrile (SAN) copolymers [9003-54-7] have superior properties to polystyrene in the areas of toughness, rigidity, and chemical and thermal resistance (2), and, consequendy, many commercial appHcations for them have developed. These optically clear materials containing between 15 and 35% AN can be readily processed by extmsion and injection mol ding, but they lack real impact resistance. [Pg.191]

Acrylonitrile copolymeri2es readily with many electron-donor monomers other than styrene. Hundreds of acrylonitrile copolymers have been reported, and a comprehensive listing of reactivity ratios for acrylonitrile copolymeri2ations is readily available (34,102). Copolymeri2ation mitigates the undesirable properties of acrylonitrile homopolymer, such as poor thermal stabiUty and poor processabiUty. At the same time, desirable attributes such as rigidity, chemical resistance, and excellent barrier properties are iacorporated iato melt-processable resias. [Pg.196]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Acrylonitrile—Butadiene—Styrene. Available only as sheet, ABS has good toughness and high impact resistance. It is readily therm oform able over a wide range of temperatures and can be deeply drawn. ABS has poor solvent resistance and low continuous-use temperature. It is often used in housings for office equipment (see Acrylonitrile polymers). [Pg.377]

Eoamed polystyrene sheet has exceUent strength, thermal resistance, formabUity, and shock resistance, as weU as low density. It is widely known for its use in beverage cups, food containers, building insulation panels, and shock absorbent packaging. Polystyrene products can be recycled if suitable coUection methods are estabUshed. Eoamed polystyrene sheet can also be easily therm oformed (see Styrene plastics). [Pg.378]

Ethylenebis(tetrabromophthalimide). The additive ethylenebis(tetrabromophthalimide) [41291 -34-3] is prepared from ethylenediamine and tetrabromophthabc anhydride [632-79-1]. It is a specialty product used ia a variety of appHcations. It is used ia engineering thermoplastics and polyolefins because of its thermal stabiUty and resistance to bloom (42). It is used ia styrenic resias because of its uv stabiUty (43). This flame retardant has been shown to be more effective on a contained bromine basis than other brominated flame retardants ia polyolefins (10). [Pg.469]

The combination of stmctural strength and flotation has stimulated the design of pleasure boats using a foamed-in-place polyurethane between thin skins of high tensUe strength (231). Other ceUular polymers that have been used in considerable quantities for buoyancy appHcations are those produced from polyethylene, poly(vinyl chloride), and certain types of mbber. The susceptibUity of polystyrene foams to attack by certain petroleum products that are likely to come in contact with boats led to the development of foams from copolymers of styrene and acrylonitrUe which are resistant to these materials... [Pg.416]

Foaming polystyrene resin prepared by blending with gas deHvers an opaque, low density sheet useful for beverage-bottle and plastic can labels as a water-resistant paper substitute (see Styrene polymers). [Pg.452]

Cross-linked macromolecular gels have been prepared by Eriedel-Crafts cross-linking of polystyrene with a dihaloaromatic compound, or Eriedel-Crafts cross-linking of styrene—chloroalkyl styrene copolymers. These polymers in their sulfonated form have found use as thermal stabilizers, especially for use in drilling fluids (193). Cross-linking polymers with good heat resistance were also prepared by Eriedel-Crafts reaction of diacid haUdes with haloaryl ethers (194). [Pg.563]

Eriedel-Crafts reaction of naphthalene or tetrahydronaphthalene derivatives with those of styrene or alkylbenzenes has been used in the preparation of high viscous fluids for traction drive (195). Similarly, Eriedel-Crafts reaction of tetraline and a-methylstyrene followed by catalytic hydrogenation provided l-(l-decalyl)-2-cyclohexyl propane, which is used as a highly heat resistant fluid (196). [Pg.563]

Blends ofiPetramethylbisphenolA-PC (TMBPA-PC) with ModfiedPS or Styrene-Ac7ylonitrile(SAN) Copolymer. By installing halogen atoms on the aromatic rings of the PC-backbone, not only the resistance to heat softening can be increased (eg, TMBPA-PC = 203° C) (209), but also the compatibiUty with olefins. [Pg.160]

Other Polymers. Besides polycarbonates, poly(methyl methacrylate)s, cycfic polyolefins, and uv-curable cross-linked polymers, a host of other polymers have been examined for their suitabiUty as substrate materials for optical data storage, preferably compact disks, in the last years. These polymers have not gained commercial importance polystyrene (PS), poly(vinyl chloride) (PVC), cellulose acetobutyrate (CAB), bis(diallylpolycarbonate) (BDPC), poly(ethylene terephthalate) (PET), styrene—acrylonitrile copolymers (SAN), poly(vinyl acetate) (PVAC), and for substrates with high resistance to heat softening, polysulfones (PSU) and polyimides (PI). [Pg.162]

Styrene—acrylic copolymers provide latices with good water resistance and gloss potential in both interior and exterior latex paints. However, they are typically regarded as having limited exterior durabiUty compared to all-acryhc latex emulsions that are designed for exterior use. [Pg.541]

Automotive appHcations account for about 116,000 t of woddwide consumption aimuaHy, with appHcations for various components including headlamp assembHes, interior instmment panels, bumpers, etc. Many automotive appHcations use blends of polycarbonate with acrylonitrile—butadiene—styrene (ABS) or with poly(butylene terephthalate) (PBT) (see Acrylonitrile polymers). Both large and smaH appHances also account for large markets for polycarbonate. Consumption is about 54,000 t aimuaHy. Polycarbonate is attractive to use in light appHances, including houseware items and power tools, because of its heat resistance and good electrical properties, combined with superior impact resistance. [Pg.285]

Isophthahc (y -phthahc) acid [121 -91 -5] (IPA) is selected to enhance thermal endurance as well as to produce stronger, more resiUent cross-linked plastics that demonstrate improved resistance to chemical attack. TerephthaUc (p-phthaUc) acid [100-21-0] (TA) provides somewhat similar properties as isophthahc acid but is only used in selective formulations due to the limited solubiUty of these polyester polymers in styrene [100-42-5] (see Phthalic acid AND OTHERBENZENEPOLYCARBOXYLIC ACIDS). [Pg.313]


See other pages where Styrene resistivity is mentioned: [Pg.87]    [Pg.130]    [Pg.140]    [Pg.314]    [Pg.381]    [Pg.383]    [Pg.430]    [Pg.430]    [Pg.87]    [Pg.130]    [Pg.140]    [Pg.314]    [Pg.381]    [Pg.383]    [Pg.430]    [Pg.430]    [Pg.23]    [Pg.1023]    [Pg.186]    [Pg.191]    [Pg.192]    [Pg.202]    [Pg.202]    [Pg.469]    [Pg.469]    [Pg.490]    [Pg.447]    [Pg.161]    [Pg.252]    [Pg.332]    [Pg.379]    [Pg.532]    [Pg.68]    [Pg.268]    [Pg.10]    [Pg.515]    [Pg.260]   
See also in sourсe #XX -- [ Pg.120 , Pg.122 ]




SEARCH



Acrylonitrile-butadiene-styrene chemical, resistance

Chemical Resistance of Styrene Polymers

Impact resistant styrene/methyl

Styrene-based resist, cross-linking

Styrene-butadiene rubber degradation resistance

Styrene-butadiene rubber, chemical resistance

Styrene/methyl methacrylate impact-resistant

© 2024 chempedia.info