Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure computer simulation

Many research groups have observed TR ESR spectra under photolysis of DAR, IRG651, TPO, and BAPO (Scheme 12.1) and of other Type 1 Pis. Analysis of ESR spectra of the primary radicals formed and their spin adducts allows determination of radical structure. Computer simulation with user-friendly software was used to elucidate the radical structure. [Pg.255]

Molecular Structure-Computer simulation 2 Molecules-Models-Computer simulation 1. Title. [Pg.762]

Novikov, V. U. Kozlov, G. V. The foundations of fractal approach to polymers structure. Non-Euclidean physics of polymers. In Applied Synergetics, Fractals and Structures Computer Simulation. Ed. Oksogoev, A. Tomsk, TSU, 2002, 268-302. [Pg.242]

Figure 1. Structure Dickerson dodecamer [9] (left) and prealbumin dimer [10] (right bottom) (Langridge s first examples [11] of electrostatic potential visualizations in combination with skeletal and transparent CPK presentation) as molecular biological structural representatives of the nucleoprotein system, but also as biological representations of individual and relatedness within the frame of structure-phase transitions familiarities between early universe structure computer simulations [12] and cholesteric texture paintings by Lehmann [13,14] (right top). Figure 1. Structure Dickerson dodecamer [9] (left) and prealbumin dimer [10] (right bottom) (Langridge s first examples [11] of electrostatic potential visualizations in combination with skeletal and transparent CPK presentation) as molecular biological structural representatives of the nucleoprotein system, but also as biological representations of individual and relatedness within the frame of structure-phase transitions familiarities between early universe structure computer simulations [12] and cholesteric texture paintings by Lehmann [13,14] (right top).
Today s advanced analytical tools help to visualize some of these structures. Computer simulations facilitate modeling and visualizing three-dimensional structures and transformations. With the support of these facilities, the study of aggregation behavior of surfactants should lead to more realistic structures. [Pg.237]

Nucleic acids—Structure—Congresses. 2. Nucleic acids—Structure— Computer simulation—Congresses. [Pg.441]

Different theories have been proposed to explain hydrophobic attraction. Like on hydrophilic surfaces, the structure of water at hydrophobic surface is different from the bulk structure. Computer simulations [1211, 1212], sum-frequency vibrational spectroscopy [1163], X-ray [1078, 1213, 1214], and neutron reflectivity [1076, 1077] show a layer of up to 1 nm with a reduced density and an increased order. When two hydrophobic surfaces approach each other at some point, the surface layers overlap and lead to an attractive force [1212,1215,1216]. This force is, however, short ranged and can certainly not explain the long-range component. [Pg.309]

Interactions between macromolecules (protems, lipids, DNA,.. . ) or biological structures (e.g. membranes) are considerably more complex than the interactions described m the two preceding paragraphs. The sum of all biological mteractions at the molecular level is the basis of the complex mechanisms of life. In addition to computer simulations, direct force measurements [98], especially the surface forces apparatus, represent an invaluable tool to help understand the molecular interactions in biological systems. [Pg.1741]

Classical ion trajectory computer simulations based on the BCA are a series of evaluations of two-body collisions. The parameters involved in each collision are tire type of atoms of the projectile and the target atom, the kinetic energy of the projectile and the impact parameter. The general procedure for implementation of such computer simulations is as follows. All of the parameters involved in tlie calculation are defined the surface structure in tenns of the types of the constituent atoms, their positions in the surface and their themial vibration amplitude the projectile in tenns of the type of ion to be used, the incident beam direction and the initial kinetic energy the detector in tenns of the position, size and detection efficiency the type of potential fiinctions for possible collision pairs. [Pg.1811]

We carry out computer simulations in the hope of understanding bulk, macroscopic properties in temis of the microscopic details of molecular structure and interactions. This serves as a complement to conventional experiments, enabling us to leam something new something that cannot be found out in other ways. [Pg.2239]

M. H. Hao, M. R. Pincus, S. Rackovsky, and H. A. Scheraga. Unfolding and refolding of the native structure of bovine pancreatic trypsin inhibitor studied by computer simulations. Biochemistry, 32 9614-9631, 1993. [Pg.259]

Many problems in force field investigations arise from the calculation of Coulomb interactions with fixed charges, thereby neglecting possible mutual polarization. With that obvious drawback in mind, Ulrich Sternberg developed the COSMOS (Computer Simulation of Molecular Structures) force field [30], which extends a classical molecular mechanics force field by serai-empirical charge calculation based on bond polarization theory [31, 32]. This approach has the advantage that the atomic charges depend on the three-dimensional structure of the molecule. Parts of the functional form of COSMOS were taken from the PIMM force field of Lindner et al., which combines self-consistent field theory for r-orbitals ( nr-SCF) with molecular mechanics [33, 34]. [Pg.351]

The vibrational states of a molecule are observed experimentally via infrared and Raman spectroscopy. These techniques can help to determine molecular structure and environment. In order to gain such useful information, it is necessary to determine what vibrational motion corresponds to each peak in the spectrum. This assignment can be quite difficult due to the large number of closely spaced peaks possible even in fairly simple molecules. In order to aid in this assignment, many workers use computer simulations to calculate the vibrational frequencies of molecules. This chapter presents a brief description of the various computational techniques available. [Pg.92]

An area of great interest in the polymer chemistry field is structure-activity relationships. In the simplest form, these can be qualitative descriptions, such as the observation that branched polymers are more biodegradable than straight-chain polymers. Computational simulations are more often directed toward the quantitative prediction of properties, such as the tensile strength of the bulk material. [Pg.308]

Extensive computer simulations have been caiTied out on the near-surface and surface behaviour of materials having a simple cubic lattice structure. The interaction potential between pairs of atoms which has frequently been used for inert gas solids, such as solid argon, takes die Lennard-Jones form where d is the inter-nuclear distance, is the potential interaction energy at the minimum conesponding to the point of... [Pg.199]

The comparison with experiment can be made at several levels. The first, and most common, is in the comparison of derived quantities that are not directly measurable, for example, a set of average crystal coordinates or a diffusion constant. A comparison at this level is convenient in that the quantities involved describe directly the structure and dynamics of the system. However, the obtainment of these quantities, from experiment and/or simulation, may require approximation and model-dependent data analysis. For example, to obtain experimentally a set of average crystallographic coordinates, a physical model to interpret an electron density map must be imposed. To avoid these problems the comparison can be made at the level of the measured quantities themselves, such as diffraction intensities or dynamic structure factors. A comparison at this level still involves some approximation. For example, background corrections have to made in the experimental data reduction. However, fewer approximations are necessary for the structure and dynamics of the sample itself, and comparison with experiment is normally more direct. This approach requires a little more work on the part of the computer simulation team, because methods for calculating experimental intensities from simulation configurations must be developed. The comparisons made here are of experimentally measurable quantities. [Pg.238]

AMU Bonvm, R Boelens, R Kaptem. Determination of biomolecular structures by NMR Use of relaxation matrix calculations. In WF van Gunsteren, PK Weiner, AI Wilkinson, eds. Computer Simulation of Biomolecular Systems Theoretical and Experimental Applications, Vol 2. Leiden ESCOM, 1993, pp 407-440. [Pg.273]

Computer simulations of electron transfer proteins often entail a variety of calculation techniques electronic structure calculations, molecular mechanics, and electrostatic calculations. In this section, general considerations for calculations of metalloproteins are outlined in subsequent sections, details for studying specific redox properties are given. Quantum chemistry electronic structure calculations of the redox site are important in the calculation of the energetics of the redox site and in obtaining parameters and are discussed in Sections III.A and III.B. Both molecular mechanics and electrostatic calculations of the protein are important in understanding the outer shell energetics and are discussed in Section III.C, with a focus on molecular mechanics. [Pg.395]

Very recently, people who engage in computer simulation of crystals that contain dislocations have begun attempts to bridge the continuum/atomistic divide, now that extremely powerful computers have become available. It is now possible to model a variety of aspects of dislocation mechanics in terms of the atomic structure of the lattice around dislocations, instead of simply treating them as lines with macroscopic properties (Schiotz et al. 1998, Gumbsch 1998). What this amounts to is linking computational methods across different length scales (Bulatov et al. 1996). We will return to this briefly in Chapter 12. [Pg.50]

Metallurgists originally, and now materials scientists (as well as solid-state chemists) have used erystallographic methods, certainly, for the determination of the structures of intermetallic compounds, but also for such subsidiary parepistemes as the study of the orientation relationships involved in phase transformations, and the study of preferred orientations, alias texture (statistically preferential alignment of the crystal axes of the individual grains in a polycrystalline assembly) however, those who pursue such concerns are not members of the aristocracy The study of texture both by X-ray diffraction and by computer simulation has become a huge sub-subsidiary field, very recently marked by the publication of a major book (Kocks el al. 1998). [Pg.177]

Colloidal crystals . At the end of Section 2.1.4, there is a brief account of regular, crystal-like structures formed spontaneously by two differently sized populations of hard (polymeric) spheres, typically near 0.5 nm in diameter, depositing out of a colloidal solution. Binary superlattices of composition AB2 and ABn are found. Experiment has allowed phase diagrams to be constructed, showing the crystal structures formed for a fixed radius ratio of the two populations but for variable volume fractions in solution of the two populations, and a computer simulation (Eldridge et al. 1995) has been used to examine how nearly theory and experiment match up. The agreement is not bad, but there are some unexpected differences from which lessons were learned. [Pg.475]


See other pages where Structure computer simulation is mentioned: [Pg.249]    [Pg.56]    [Pg.179]    [Pg.3]    [Pg.2456]    [Pg.249]    [Pg.56]    [Pg.179]    [Pg.3]    [Pg.2456]    [Pg.309]    [Pg.310]    [Pg.741]    [Pg.2365]    [Pg.246]    [Pg.317]    [Pg.334]    [Pg.447]    [Pg.522]    [Pg.73]    [Pg.16]    [Pg.97]    [Pg.386]    [Pg.182]    [Pg.511]    [Pg.474]    [Pg.540]   
See also in sourсe #XX -- [ Pg.1187 ]




SEARCH



Computational simulations

Computer simulation

Structure computation

© 2024 chempedia.info