Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure analysis water

Precipitated K—salt crystals are carefully filtrated and washed so as to separate them from the mother solution. Drying of filtrated K-salt is also a very delicate and important process that must be performed under conditions that avoid hydrolysis of the material. Potassium heptafluorotantalate is sensitive to water, basic compounds and alcohols, especially at elevated temperatures. The main product of K-salt hydrolysis is Marignac s salt. For a long time it was believed that the composition of Marignac s salt is K/Ta Fg. However, X-ray crystal structure analysis and precise chemical analysis of the... [Pg.316]

The main property of agricultural SAH is their ability to absorb, retain in the swollen state, and then to transfer large volumes of water, in other words, their swelling behavior in a broad sense. In this section, we consider the main features of the behavior including, when necessary, some fragments of the theory of these systems and methods of their structural analysis. [Pg.111]

The molecular mechanism of the enantioselective protonation reaction by antibody 14D9 was revealed by a crystal structure analysis [19[. A catalytic carboxyl group AspH 101 was found at the bottom of the catalytic pocket and found to be necessary for catalysis by mutagenesis to Asn or Ala. The mechanism or protonation involves an overall syn addition of water to the enol ether in a chiral binding pocket ensuring complete enantioselectivity (Figure 3.4). [Pg.68]

We have defined above a way of quantifying the structure of water based on the profile of fx values that encode the number of each possible joined state of a molecule. It is now possible to use this profile as a measure of the structure of water at different temperatures. As an application of this metric it is possible to relate this to physical properties. We have shown the results of our earlier work in Table 3.3. The reader is encouraged to repeat these and to explore other structure-property relationships using the fx as single or multiple variables. A unified parameter derived from the five fx values expressed as a fraction of 1.0, might be the Shannon information content. This could be calculated from all the data created in the above studies and used as a single variable in the analysis of water and other liquid properties. [Pg.56]

An analysis of the hydration structure of water molecules in the major and minor grooves in B-DNA has shown that there is a filament of water molecules connecting both the inter and the intra phosphate groups of the two strands of B-DNA. However, such a connectivity is absent in the case of Z-DNA confirming earlier MC simulation results. The probability density distributions of the counterions around DNA shows deep penetration of the counterions in Z-DNA compared to B-DNA. Further, these distributions suggest very limited mobility for the counterions and show well defined counter-ion pattern as originally suggested in the MC study. [Pg.253]

The (EDT-TTF-I)2Br salt described above [36] and the 1 1 (TTFI4)I salt reported by Gompper [51] were the only structurally characterized salts with simple halide anions until Imakubo recently described an extensive series of Cl" and Br" salts from several ortho-diiodo tetrathiafulvalene, tetraselena-fulvalene and dithiadiselenafulvalene derivatives (Scheme 8) [62], The X-ray crystal structure analysis of the nine salts described there show a variety of halogen bonded motifs, demonstrating the adaptability of the supramolecu-lar interactions to other structural requirements imposed by the nature of the heteroatoms (O, S, Se) in the TTF frame. Indeed, in (EDT-TTF-l2)2X-(H20)2 (X = Cl, Br), a bimolecular motif (Fig. 6) associates two partially oxidized EDT-TTF-I2 molecules with one Br" anion and one water molecule. [Pg.202]

Furthermore, it is often possible to extract from the structural analysis of solid solvates a significant information on solvation patterns and their relation to induced structural polymorphism. An interesting illustration has been provided by crystal structure determinations of solvated 2,4-dichloro-5-carboxy-benzsulfonimide (5)35). This compound contains a large number of polar functions and potential donors and acceptors of hydrogen bonds and appears to have only a few conformational degrees of freedom associated with soft modes of torsional isomerism. It co-crystallizes with a variety of solvents in different structural forms. The observed modes of crystallization and molecular conformation of the host compound were found to be primarily dependent on the nature of the solvent environment. Thus, from protic media such as water and wet acetic acid layered structures were formed which resemble intercalation type compounds. [Pg.16]

Luck, W.A.P. 1981. Structures of water in aqueous systems. In Water Activity Influences on Food Quality (L.B. Rockland and G.F. Stewart, eds), pp. 407 134. Academic Press, New York. Ludescher, R.D., Shah, N.K., McCaul, C.P., and Simon, K.V. 2001. Beyond Tg Optical luminescence measurements of molecular mobility in amorphous solid foods. Food Hydro colloids 15, 331-339. Ludwig, R. 2001. Water From cluster to the bulk. Angewandte Chem. Int. Ed. 40, 1808-1827. Maclnnes, W.M. 1993. Dynamic mechanical thermal analysis of sucrose solutions. In The Glassy State in Foods (J.M.V. Blanshard and PJ. Lillford, eds), pp. 223-248. Nottingham Univ. Press, Loughborough, Leicestershire. [Pg.95]

In off-line coupling of LC and MS for the analysis of surfactants in water samples, the suitability of desorption techniques such as Fast Atom Bombardment (FAB) and Desorption Chemical Ionisation was well established early on. In rapid succession, new interfaces like Atmospheric Pressure Chemical Ionisation (APCI) and Electrospray Ionisation (ESI) were applied successfully to solve a large number of analytical problems with these substance classes. In order to perform structure analysis on the metabolites and to improve sensitivity for the detection of the various surfactants and their metabolites in the environment, the use of various MS-MS techniques has also proven very useful, if not necessary, and in some cases even high-resolution MS is required. [Pg.25]

HPLC has been shown as an effective method in the fractionation and preparation of AHLs for structural analysis. Preparation of AHL-containing samples for HPLC analysis requires their extraction with organic solvents such as dichloromethane or ethyl acetate [37]. Usually, C8 reverse-phase columns are employed and samples eluted with either gradient or isocratic mobile phases, e.g. acetonitrile-water. Fractions are analysed for the presence of AHLs using the biosensors described in the previous section. AHLs from active fractions can then be identified using more powerful techniques (see following sections). [Pg.300]

In addition to the indirect experimental evidence coming from work function measurements, information about water orientation at metal surfaces is beginning to emerge from recent applications of a number of in situ vibrational spectroscopic techniques. Infrared reflection-absorption spectroscopy, surface-enhanced Raman scattering, and second harmonic generation have been used to investigate the structure of water at different metal surfaces, but the pictures emerging from all these studies are not always consistent, partially because of surface modification and chemical adsorption, which complicate the analysis. [Pg.131]

In a somewhat different type of furnace that suffered from a combustion-gas explosion, the floor beams, which were similar in size, were deflected at most 2-3 cm. A structural analysis of this explosion led to the conclusion that peak pressures were in the order of 30-40 kN/m (5-6 psi). Comparing the two damage descriptions, it is obvious that the smelt-water explosion generated pressures well in excess of 40 kN/m on the floor. [Pg.155]

Another possible solution to the problem of analyzing multiple-layered membrane composites is a newly developed method using NMR spin-lattice relaxation measurements (Glaves 1989). In this method, which allows a wide range of pore sizes to be studied (from less than 1 nm to greater than 10 microns), the moisture content of the composite membrane is controlled so that the fine pores in the membrane film of a two-layered composite are saturated with water, but only a small quantity of adsorbed water is present in the large pores of the support. It has been found that the spin-lattice relaxation decay time of a fluid (such as water) in a pore is shorter than that for the same fluid in the bulk. From the relaxation data the pore volume distribution can be calculated. Thus, the NMR spin-lattice relaxation data of a properly prepared membrane composite sample can be used to derive the pore size distribution that conventional pore structure analysis techniques... [Pg.76]


See other pages where Structure analysis water is mentioned: [Pg.1143]    [Pg.436]    [Pg.125]    [Pg.58]    [Pg.320]    [Pg.361]    [Pg.434]    [Pg.738]    [Pg.1143]    [Pg.103]    [Pg.698]    [Pg.23]    [Pg.25]    [Pg.26]    [Pg.100]    [Pg.211]    [Pg.203]    [Pg.229]    [Pg.4]    [Pg.332]    [Pg.197]    [Pg.105]    [Pg.102]    [Pg.14]    [Pg.14]    [Pg.174]    [Pg.274]    [Pg.116]    [Pg.44]    [Pg.1067]    [Pg.431]    [Pg.360]    [Pg.409]    [Pg.688]    [Pg.300]    [Pg.44]    [Pg.111]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Structural analysis of humic substances in water and soils

Structural analysis, water-soluble polymers

Structural water

Structured water

Water analysis

Water structuring

Water, structure

© 2024 chempedia.info