Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stoichiometry determining formulas

Stoichiometric The characteristic proportions of chemical reaction, obtained from chemical formulae, equations, atomic weights and molecular weights. Stoichiometry determines what and how much is used and produced in a chemical process. [Pg.222]

See the Saunders Interactive General Chemistry CD-ROM, Screen 5.8, Using Stoichiometry Determination of an Empirical Formula. [Pg.1166]

Evidently, the most interesting materials are those in a fractional oxidation state, with general formula (cation)[M(dmit)2] (n > 1), since they can exhibit both electrical and magnetic properties. Only eight such complexes have been reported so far. All of them but (BDTA)[Ni(dmit)2]2 [89] have been obtained as powders. They have in general been poorly characterized, and their stoichiometries have been determined from elemental analysis. Among these powdered compounds, the... [Pg.148]

Widespread medicinal use of colloidal bismuth subcitrate (CBS) has prompted extensive studies of bismuth compounds involving the citrate anion. Bismuth citrate is essentially insoluble in water, but a dramatic increase in solubility with increasing pH has been exploited as a bio-ready source of soluble bismuth, a material referred to as CBS. Formulation of these solutions is complicated by the variability of the bismuth anion stoichiometry, the presence of potassium and/ or ammonium cations, the susceptibility of bismuth to oxygenation to Bi=0, and the incorporation of water in isolated solids. Consequently, a variety of formulas are classified in the literature as CBS. Solids isolated from various, often ill-defined combinations of bismuth citrate, citric acid, potassium hydroxide, or ammonium hydroxide have been assigned formulas on the basis of elemental analysis data or by determination of water and ammonia content, but are of low significance in the absence of complementary data other than thermal analysis (163), infrared spectroscopy (163), or NMR spectroscopy (164). In this context, the Merck index lists the chemical formula of CBS as KgfNHJaBieOafOHMCeHsCbh in the 11th edition (165), but in the most recent edition provides a less precise name, tripotassium dicitrato bismuthate (166). [Pg.336]

This is a critical chapter in your study of chemistry. Our goal is to help you master the mole concept. You will learn about balancing equations and the mole/mass relationships (stoichiometry) inherent in these balanced equations. You will learn, given amounts of reactants, how to determine which one limits the amount of product formed. You will also learn how to determine the empirical and molecular formulas of compounds. All of these will depend on the mole concept. Make sure that you can use your calculator correctly. If you are unsure about setting up problems, refer back to Chapter 1 of this book and go through Section 1-4, on using the Unit Conversion Method. Review how to find atomic masses on the periodic table. Practice, Practice, Practice. [Pg.32]

In this chapter, you learned how to balance simple chemical equations by inspection. Then you examined the mass/mole/particle relationships. A mole has 6.022 x 1023 particles (Avogadro s number) and the mass of a substance expressed in grams. We can interpret the coefficients in the balanced chemical equation as a mole relationship as well as a particle one. Using these relationships, we can determine how much reactant is needed and how much product can be formed—the stoichiometry of the reaction. The limiting reactant is the one that is consumed completely it determines the amount of product formed. The percent yield gives an indication of the efficiency of the reaction. Mass data allows us to determine the percentage of each element in a compound and the empirical and molecular formulas. [Pg.44]

The formula of a compound is determined by using the mass of the original substance, usually a metal, and the mass of a compound of that substance, usually an oxide. (See the chapter on Stoichiometry.)... [Pg.279]

In the constitutional model of Ugi, rather than molecules, "ensemble of molecules (EM) are used in which the molecules can be either chemically different or identical. Like molecules, an EM has an empirical formula, which is the sum of the empirical formulae of the constiment molecules and describes the collection A of atoms within the EM under consideration. All the EM s which can be formed from A have the same empirical formula . Therefore, an EM(A) consists of one or more molecules which can be obtained from A using each atom which belongs to A only once. Moreover, a FIEM(A) or a family of isomeric EM, is the collection of all EM(A) and it is determined by the empirical formula . On the other hand, a chemical reaction, or a sequence of chemical reactions, is the conversion of an EM into an isomeric EM, and therefore a FIEM contains all EMs which are chemically interconvertible, as far as stoichiometry is concerned. In summary, a FIEM(A) contains, at least in principle, the whole chemistry of the collection A of atoms and since any collection of atoms may be chosen here, Ugi concludes that a theory of FIEM is, in fact, a theory of all chemistry. [Pg.433]

As well as the solid solution formula given above, there have been suggestions that compositions off the join may also give single-phase NASICON. Part of the problem in determining solid solution stoichiometries and limits in materials such as NASICON arises because of the... [Pg.32]

As the starting materials react, all of these compounds immediately precipitate from the reaction mixture and their metahligand stoichiometries are controlled by the lack of solubility. It was only possible to determine the structure of complex 102, which crystallizes with acetone and has a stoichiometric formula [Cu2(bpzqnx)2 (Me2 CO)] (BF4) 2 (Me2CO)2 . As explained below, the structure consists of unsaturated CU2L2 units, half of which contain the copper center also bonded to acetone molecules. [Pg.72]

Introduction and Orientation, Matter and Energy, Elements and Atoms, Compounds, The Nomenclature of Compounds, Moles and Molar Masses, Determination of Chemical Formulas, Mixtures and Solutions, Chemical Equations, Aqueous Solutions and Precipitation, Acids and Bases, Redox Reactions, Reaction Stoichiometry, Limiting Reactants... [Pg.6]

Stoichiometry Chemical Arithmetic 3.12 Determining Empirical Formulas Elemental Analysis... [Pg.75]

With a known mineral, as determined by electron diffraction or other technique (such as X-ray diffraction), determination of the stoichiometry and structural formula can be a suitable test for analytical precision of thin-film elemental analyses. This simple test follows the practice commonly employed for electron microprobe data in which the accuracy (and completeness) of an analysis is judged by the departure from stoichiometry calculated for a given mineral. Thus, thin-film analyses of olivines, pyroxenes, garnets, feldspars and many other common rock-forming minerals can be examined for internal consistency via a calculation of structural formulae. [Pg.48]

In addition to using the absolute intensities of the atomic emission lines, the peak intensity ratios of these lines have been used to analyze samples. Tran et al. [77] analyzed the atomic intensity ratios of several organic compounds with the hope to determine the empirical formula of a compound based on the ratios from several elements. Calibration curves were built based on C H, C 0, and C N atomic emission ratios from various compounds that covered a wide range of stoichiometries. Then, four compounds with known stoichiometries were tested against the calibration curves. The ratios determined from the calibration curves were compared with the actual stoichiometries and showed accuracy of 3% on average. In the study of nitroaromatic and polycyclic aromatic hydrocarbon samples, the ratios between C2 and CN and between O and N of different samples were shown to correlate with the molecular formula [75], Anzano et al. [71] also attribute success of their correlation of plastics to differences in the C/H atomic emission intensity ratio of each sample. [Pg.294]

The composition of these oxides normally departs from the precise stoichiometry, expressed in their chemical formulae. For example, in the case of a stoichiometric oxide, such as A05, where 8 = 0, we will have only thermal disorder, where the concentration of vacancies, and interstitials will be determined by the Schottky, Frenkel, and anti-Frenkel mechanisms [40-42] (these defects are explained in more detail in Chapter 5). In the case of the Schotky mechanism, the following equilibrium, described with the help of the Kroger-Vink notation, [43] develops [40]... [Pg.67]

Recall that stoichiometry involves calculating the amounts of reactants and products in chemical reactions. If you know the atoms or ions in a formula or a reaction, you can use stoichiometry to determine the amounts of these atoms or ions that react. Solving stoichiometry problems in solution chemistry involves the same strategies you learned in Unit 2. Calculations involving solutions sometimes require a few additional steps, however. For example, if a precipitate forms, the net ionic equation may be easier to use than the chemical equation. Also, some problems may require you to calculate the amount of a reactant, given the volume and concentration of the solution. [Pg.348]

Rationalization of known compounds provides a level of usefulness that justifies the rule. But the rule also permits observed molecular stoichiometries of newly synthesized compounds to be translated into acluster shape. For example, [Al Bu ]2-has eve = 50 or sep =13 consistent with n = 12 and a deltahedral structure. The compound has been synthesized and an X-ray diffraction study reveals an icosahe-dral shape. The ability to suggest reasonable structures based on knowledge of a molecular formula generated by a technique like mass spectrometry accelerated the development of cluster chemistry simply because rapid spectroscopic methods can be more productively applied. Although efficient X-ray crystallographic structure determination reduces its importance for compounds that can be isolated in pure crystalline forms, transient intermediates detected in a reaction mixture can now be given reasonable structures. [Pg.45]

For minerals that dissolve incongmently, the determination of reaction rate depends upon which component released to solution is used in Equation (5). Due to preferential release of cations such as calcium and magnesium during inosUicate dissolution, for example, dissolution rates for these phases are usually calculated from observed silicon release (Brantley and Chen, 1995). Here, we report silicate dissolution rates based upon silicon release, but we normalize by the stoichiometry of the mineral and report as mol mineral per unit surface area per unit time. It is important to note that dissolution rates reported on this basis depend upon both the formula unit and the monitored solute. [Pg.2335]

Stoichiometry. The stoichiometry of the formation of cancrinite from kaolin was studied. The amount of NaOH which reacts with a given amount of clay was determined by mixing the clay with a solution containing various concentrations of NaOH and a constant concentration of NaNO.3 (necessary to form the cancrinite). Essentially all of the NaOH in the solutions reacted during cancrinite formation. The mole ratios of NaOH, NaNOs, and kaolin reacted are given in Table V, based on the formula Al2Si207 2H2O for kaolin (MW = 259). [Pg.113]


See other pages where Stoichiometry determining formulas is mentioned: [Pg.273]    [Pg.226]    [Pg.2]    [Pg.219]    [Pg.82]    [Pg.226]    [Pg.320]    [Pg.250]    [Pg.205]    [Pg.422]    [Pg.520]    [Pg.159]    [Pg.379]    [Pg.42]    [Pg.518]    [Pg.423]    [Pg.1028]    [Pg.6]    [Pg.2]    [Pg.7]    [Pg.302]    [Pg.1156]    [Pg.135]    [Pg.81]    [Pg.138]    [Pg.213]   
See also in sourсe #XX -- [ Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 ]




SEARCH



Formulas, determination

Stoichiometry determination

Stoichiometry, determining

© 2024 chempedia.info