Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steady simulation

To speed up the process of attainment of the temperature steady value one can use special operations calculation without a kiln rotation, using large time intervals and calculation in two-dimensional R-tp geometry without regard for heat and mass transfer along an axis The program for realization of discussed simulation algorithms enables to calculate temperature in cells, a total number of which can not exceed 130 thousands A circular kiln structure can contain up to three layers. [Pg.421]

Koelman J M V A and P J Hoogerbrugge 1993. Dynamic Simulations of Hard-sphere Suspensio Under Steady Shear. Europhysics Letters 21 363-368. [Pg.423]

Using different types of time-stepping techniques Zienkiewicz and Wu (1991) showed that equation set (3.5) generates naturally stable schemes for incompressible flows. This resolves the problem of mixed interpolation in the U-V-P formulations and schemes that utilise equal order shape functions for pressure and velocity components can be developed. Steady-state solutions are also obtainable from this scheme using iteration cycles. This may, however, increase computational cost of the solutions in comparison to direct simulation of steady-state problems. [Pg.74]

Adding time-dependent terms to the equations the simulation is treated as an initial value problem in which at a given reference time all stresses are zero the steady-state solution can be found iteratively. [Pg.95]

Irradiation of ethyleneimine (341,342) with light of short wavelength ia the gas phase has been carried out direcdy and with sensitization (343—349). Photolysis products found were hydrogen, nitrogen, ethylene, ammonium, saturated hydrocarbons (methane, ethane, propane, / -butane), and the dimer of the ethyleneimino radical. The nature and the amount of the reaction products is highly dependent on the conditions used. For example, the photoproducts identified ia a fast flow photoreactor iacluded hydrocyanic acid and acetonitrile (345), ia addition to those found ia a steady state system. The reaction of hydrogen radicals with ethyleneimine results ia the formation of hydrocyanic acid ia addition to methane (350). Important processes ia the photolysis of ethyleneimine are nitrene extmsion and homolysis of the N—H bond, as suggested and simulated by ab initio SCF calculations (351). The occurrence of ethyleneimine as an iatermediate ia the photolytic formation of hydrocyanic acid from acetylene and ammonia ia the atmosphere of the planet Jupiter has been postulated (352), but is disputed (353). [Pg.11]

It has been postulated that jet breakup is the result of aerodynamic interaction between the Hquid and the ambient gas. Such theory considers a column of Hquid emerging from a circular orifice into a surrounding gas. The instabiHty on the Hquid surface is examined by using first-order linear theory. A small perturbation is imposed on the initially steady Hquid motion to simulate the growth of waves. The displacement of the surface waves can be obtained by the real component of a Fourier expression ... [Pg.330]

PLOW 1 RAN was made available in 1974 by Monsanto Co. for steady-state simulation of chemical processes based on sequential modular technology. It requires specification of feed streams and topology of the system. In 1987, an optimization enhancement was added. [Pg.62]

Many process simulators come with optimizers that vary any arbitrary set of stream variables and operating conditions and optimize an objective function. Such optimizers start with an initial set of values of those variables, carry out the simulation for the entire flow sheet, determine the steady-state values of all the other variables, compute the value of the objective function, and develop a new guess for the variables for the optimization so as to produce an improvement in the objective function. [Pg.78]

Mathematically speaking, a process simulation model consists of a set of variables (stream flows, stream conditions and compositions, conditions of process equipment, etc) that can be equalities and inequalities. Simulation of steady-state processes assume that the values of all the variables are independent of time a mathematical model results in a set of algebraic equations. If, on the other hand, many of the variables were to be time dependent (m the case of simulation of batch processes, shutdowns and startups of plants, dynamic response to disturbances in a plant, etc), then the mathematical model would consist of a set of differential equations or a mixed set of differential and algebraic equations. [Pg.80]

Classification Process simulation refers to the activity in which mathematical models of chemical processes and refineries are modeled with equations, usually on the computer. The usual distinction must be made between steady-state models and transient models, following the ideas presented in the introduction to this sec tion. In a chemical process, of course, the process is nearly always in a transient mode, at some level of precision, but when the time-dependent fluctuations are below some value, a steady-state model can be formulated. This subsection presents briefly the ideas behind steady-state process simulation (also called flowsheeting), which are embodied in commercial codes. The transient simulations are important for designing startup of plants and are especially useful for the operating of chemical plants. [Pg.508]

This program helps calculate the rate of methanol formation in mol/m s at any specified temperature, and at different hydrogen, carbon monoxide and methanol concentrations. This simulates the working of a perfectly mixed CSTR specified at discharge condition, which is the same as these conditions are inside the reactor at steady-state operation. Corresponding feed compositions and volumetric rates can be calculated from simple material balances. [Pg.219]

The eomplex FCC system involves not only turbomaehinery, but also related proeess eomponents. All of these must be properly designed and sized to operate within system parameters from startup to steady state design point, and through shutdown. System response to emergeney eonditions is also mandatory. Computer simulation is, therefore, an integral part of the design proeess. A eomputer program eapable of this simulation is deseribed below. [Pg.185]

The air and wall temperatures and the concentrations in both zones are solved by iteration toward a steady-state situation or by simulating the time-dependent development. In the time-dependent calculation the heat capacity of the walls should be included. [Pg.623]

In reality, heat is conducted in all three spatial dimensions. While specific building simulation codes can model the transient and steady-state two-dimensional temperature distribution in building structures using finite-difference or finite-elements methods, conduction is normally modeled one-... [Pg.1066]

Many HVAC system engineering problems focus on the operation and the control of the system. In many cases, the optimization of the system s control and operation is the objective of the simulation. Therefore, the appropriate modeling of the controllers and the selected control strategies are of crucial importance in the simulation. Once the system is correctly set up, the use of simulation tools is very helpful when dealing with such problems. Dynamic system operation is often approximated by series of quasi-steady-state operating conditions, provided that the time step of the simulation is large compared to the dynamic response time of the HVAC equipment. However, for dynamic systems and plant simulation and, most important, for the realistic simulation... [Pg.1072]

HVAC components are mostly modeled in a steady state. However, the normally used time step of 1-h in the simulation is too large for the simulation of control processes. [Pg.1073]

Quality-assurance procedures have to be established for the checking of both input and results checks of energy balances, plausibility tests, and comparison with steady-state calculations and with results from similar cases. These checks are demanding and time consuming and thus prone to be omitted but are mandatory for reliable simulations. [Pg.1080]

M. Ehsasi et al. Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction Oxidation of CO on platinum, experiments and simulations. J Chem Phys 97 4949-4956, 1989. [Pg.432]

Flame acceleration does not generate extremely high overpressures. That is, numerical simulation of an explosion process with a steady flame speed equal to the highest flame speed observed results in a conservative estimate of its blast effects. [Pg.107]

Blast effects can be represented by a number of blast models. Generally, blast effects from vapor cloud explosions are directional. Such effects, however, cannot be modeled without conducting detailed numerical simulations of phenomena. If simplifying assumptions are made, that is, the idealized, symmetrical representation of blast effects, the computational burden is eased. An idealized gas-explosion blast model was generated by computation results are represented in Figure 4.24. Steady flame-speed gas explosions were numerically simulated with the BLAST-code (Van den Berg 1980), and their blast effects were calculated. [Pg.129]

The relative fluctuations in Monte Carlo simulations are of the order of magnitude where N is the total number of molecules in the simulation. The observed error in kinetic simulations is about 1-2% when lO molecules are used. In the computer calculations described by Schaad, the grids of the technique shown here are replaced by computer memory, so the capacity of the memory is one limit on the maximum number of molecules. Other programs for stochastic simulation make use of different routes of calculation, and the number of molecules is not a limitation. Enzyme kinetics and very complex oscillatory reactions have been modeled. These simulations are valuable for establishing whether a postulated kinetic scheme is reasonable, for examining the appearance of extrema or induction periods, applicability of the steady-state approximation, and so on. Even the manual method is useful for such purposes. [Pg.114]

The equivalent TMB operating conditions and model parameters for the reference case were given in Table 9-1 and Fig. 9-9 presents the corresponding steady state internal concentration profdes obtained with the simulation package. The extract and raffinate purities were 97.6 % and 99.3 %, respectively the recoveries were 99.3 % and 97.6 % for the extract and raffinate streams. The solvent consumption was 1.19 L g and the productivity was 68.2 g/day - L of bed. [Pg.236]


See other pages where Steady simulation is mentioned: [Pg.225]    [Pg.225]    [Pg.756]    [Pg.135]    [Pg.370]    [Pg.324]    [Pg.217]    [Pg.287]    [Pg.29]    [Pg.313]    [Pg.62]    [Pg.74]    [Pg.673]    [Pg.738]    [Pg.1319]    [Pg.1328]    [Pg.1341]    [Pg.1497]    [Pg.1907]    [Pg.2435]    [Pg.294]    [Pg.294]    [Pg.485]    [Pg.47]    [Pg.59]    [Pg.349]    [Pg.354]    [Pg.361]    [Pg.418]   
See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.212 ]




SEARCH



CONVERTING FROM STEADY-STATE TO DYNAMIC SIMULATION

Chemical simulation, steady-state

Full steady-state simulation programs

Principles of Steady-State Flowsheet Simulation

Process simulation—steady state

Process simulation—steady state ASPEN PLUS

Process simulation—steady state CHEMCAD

Process simulation—steady state HYSYS

Process simulation—steady state calculation order

Process simulation—steady state design specifications

Process simulation—steady state drawing

Process simulation—steady state equipment parameters

Process simulation—steady state multiplication

Process simulation—steady state recycle

Process simulation—steady state stream variables

Process simulators steady-state simulations

SETTING UP A STEADY-STATE SIMULATION

Simulation programs, steady-state

Simulation steady-state chemical process

Simulations of Steady Shearing Flows

Simulations of steady state

Steady State Simulation Results for an Industrial Scale FCC Unit

Steady-State Aspen Plus Simulation

Steady-state Flowsheet Modelling and Simulation

Steady-state plant simulation

Steady-state simulation

Tubular steady-state simulation

© 2024 chempedia.info