Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

States donor/acceptor

Electron transfer, a fundamental chemical process underlying all redox reactions, has been under experimental and theoretical study for many years [1-6]. Theoretical studies of such processes seek to understand the ways in which their rate depends on donor and acceptor properties, on the solvent, and on the electronic coupling between the states involved. The different roles played by these factors and the way they affect qualitative and quantitative aspects of the electron transfer process have been thoroughly discussed in the past half-century. This kind of processes, which dominate electron transitions in molecular systems, is to be contrasted with electron transport in the solid state, that is, in metals and semiconductors. Electrochemical reactions that involve both molecular and solid-state donor/acceptor systems, bridge the gap between these phenomena [6]. Here, electron transfer takes place between quasi-free electronic states on one side, and bound molecular electronic states on the other. [Pg.592]

The electronic factor f/ " is a two-electron matrix element involving the HOMO and LUMO of the energy-donor and energy-acceptor components. By following standard arguments [5], this factor can be split into two additive terms, a coulombic term and an exchange term. The two terms depend differently on the parameters of the system (spin of ground and excited states, donor-acceptor... [Pg.34]

Figure A3.10.23 Schematic diagram of molecular CO chemisorption on a metal surface. The model is based on a donor-acceptor scheme where the CO 5 a FIOMO donates charge to surface unoccupied states and the surface back-donates charge to the CO 2 71 LUMO [58]. Figure A3.10.23 Schematic diagram of molecular CO chemisorption on a metal surface. The model is based on a donor-acceptor scheme where the CO 5 a FIOMO donates charge to surface unoccupied states and the surface back-donates charge to the CO 2 71 LUMO [58].
Figure C 1.2.9. Schematic representation of photo induced electron transfer events in fullerene based donor-acceptor arrays (i) from a TTF donor moiety to a singlet excited fullerene and (ii) from a mthenium excited MLCT state to the ground state fullerene. Figure C 1.2.9. Schematic representation of photo induced electron transfer events in fullerene based donor-acceptor arrays (i) from a TTF donor moiety to a singlet excited fullerene and (ii) from a mthenium excited MLCT state to the ground state fullerene.
The contribution of this polar structure to the bonding lowers the energy of the transition state. This may be viewed as a lower activation energy for the addition step and thus a factor which promotes this particular reaction. The effect is clearly larger the greater the difference in the donor-acceptor properties of X and Y. The transition state for the successive addition of the same monomer (whether X or Y substituted) is structure [V] ... [Pg.437]

The aim of this chapter is to give a state-of-the-art report on the plastic solar cells based on conjugated polymers. Results from other organic solar cells like pristine fullerene cells [7, 8], dye-sensitized liquid electrolyte [9], or solid state polymer electrolyte cells [10], pure dye cells [11, 12], or small molecule cells [13], mostly based on heterojunctions between phthaocyanines and perylenes [14], will not be discussed. Extensive literature exists on the fabrication of solar cells based on small molecular dyes with donor-acceptor systems (see for example [2, 3] and references therein). [Pg.271]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

Since equatorial attack is roughly antiperiplanar to two C-C bonds of the cyclic ketone, an extended hypothesis of antiperiplanar attack was proposed39. Since the incipient bond is intrinsically electron deficient, the attack of a nucleophile occurs anti to the best electron-donor bond, with the electron-donor order C—S > C —H > C —C > C—N > C—O. The transition state-stabilizing donor- acceptor interactions are assumed to be more important for the stereochemical outcome of nucleophilic addition reactions than the torsional and steric effects suggested by Felkin. [Pg.5]

Elegant evidence that free electrons can be transferred from an organic donor to a diazonium ion was found by Becker et al. (1975, 1977a see also Becker, 1978). These authors observed that diazonium salts quench the fluorescence of pyrene (and other arenes) at a rate k = 2.5 x 1010 m-1 s-1. The pyrene radical cation and the aryldiazenyl radical would appear to be the likely products of electron transfer. However, pyrene is a weak nucleophile the concentration of its covalent product with the diazonium ion is estimated to lie below 0.019o at equilibrium. If electron transfer were to proceed via this proposed intermediate present in such a low concentration, then the measured rate constant could not be so large. Nevertheless, dynamic fluorescence quenching in the excited state of the electron donor-acceptor complex preferred at equilibrium would fit the facts. Evidence supporting a diffusion-controlled electron transfer (k = 1.8 x 1010 to 2.5 X 1010 s-1) was provided by pulse radiolysis. [Pg.208]

The chiral catalyst 142 achieves selectivities through a double effect of intramolecular hydrogen binding interaction and attractive tt-tt donor-acceptor interactions in the transition state by a hydroxy aromatic group [88]. The exceptional results of some Diels-Alder reactions of cyclopentadiene with substituted acroleins catalyzed by (R)-142 are reported in Table 4.21. High enantio- and exo selectivity were always obtained. The coordination of a proton to the 2-hydroxyphenyl group with an oxygen of the adjacent B-0 bond in the nonhelical transition state should play an important role both in the exo-endo approach and in the si-re face differentiation of dienophile. [Pg.185]

In electron donor-acceptor (EDA) complexes, there is always a donor molecule and an acceptor. The donor may donate an unshared pair (an n donor) or a pair of electrons in a ti orbital of a double bond or aromatic system (a it donor). One test for the presence of an EDA complex is the electronic spectrum. These complexes generally exhibit a spectrum (called a charge-transfer spectrum) that is not the same as the sum of the spectra of the two individual molecules. Because the first excited state of the complex is relatively close in energy to the ground state, there is usually a... [Pg.102]


See other pages where States donor/acceptor is mentioned: [Pg.190]    [Pg.7]    [Pg.248]    [Pg.252]    [Pg.18]    [Pg.20]    [Pg.11]    [Pg.154]    [Pg.175]    [Pg.806]    [Pg.2010]    [Pg.289]    [Pg.22]    [Pg.123]    [Pg.154]    [Pg.175]    [Pg.28]    [Pg.22]    [Pg.107]    [Pg.190]    [Pg.7]    [Pg.248]    [Pg.252]    [Pg.18]    [Pg.20]    [Pg.11]    [Pg.154]    [Pg.175]    [Pg.806]    [Pg.2010]    [Pg.289]    [Pg.22]    [Pg.123]    [Pg.154]    [Pg.175]    [Pg.28]    [Pg.22]    [Pg.107]    [Pg.894]    [Pg.951]    [Pg.2974]    [Pg.2976]    [Pg.2977]    [Pg.2980]    [Pg.281]    [Pg.100]    [Pg.240]    [Pg.119]    [Pg.167]    [Pg.109]    [Pg.130]    [Pg.619]    [Pg.387]    [Pg.121]    [Pg.122]    [Pg.24]    [Pg.90]    [Pg.2]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Acceptor states

Donor states

© 2024 chempedia.info