Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic fluorescence quenching

Later on, such S-layer-based sensing layers were also used in the development of optical biosensors (optodes), where the electrochemical transduction principle was replaced by an optical one [97] (Fig. 10c). In this approach an oxygen-sensitive fluorescent dye (ruthenium(II) complex) was immobilized on the S-layer in close proximity to the glucose oxidase-sensing layer [97]. The fluorescence of the Ru(II) complex is dynamically quenched by molecular oxygen. Thus, a decrease in the local oxygen pressure as a result of... [Pg.356]

When anisotropy increases due to fluorescence lifetime decrease being coupled to any effect of dynamic quenching. [Pg.10]

Tomin VI, Smolarczyk G (2008) Dynamic quenching of the multiband fluorescence of 3-hydroxyflavone. Opt Spectros 104 919-925... [Pg.221]

Fluorescence quenching may be dynamic, if the photochemical process is the result of a collision between the photoexcited indicator dye and the quencher species, or static, when the luminophore and the quencher are preassociated before photoexcitation of the former20. It may be easily demonstrated that dynamic quenching in isotropic 3-D medium obeys the so-called Stem-Volmer equation (2)21 ... [Pg.103]

Huber C., Krause C., Werner T., Wolfbeis O.S., Serum chloride optical sensors based on dynamic quenching of the fluorescence of photo-immobilized lucigenin, Microchimica Acta 2003 142 245-253. [Pg.321]

In some cases it is possible to obtain a measure of the association constant for intercalation directly from fluorescence quenching data. This method is applicable when the dynamic quenching of the hydrocarbon fluorescence by DNA is small and when the intercalated hydrocarbon has a negligible fluorescence quantum yield compared to that of the free hydrocarbon. If these conditions are met, the association constant for intercalation, Kq, is equal to the Stern-Volmer quenching constant Kgy (76) and is given by Equation 1. [Pg.220]

In dynamic quenching (or diffusional quenching) the quenching species and the potentially fluorescent molecule react during the lifetime of the excited state of the latter. The efficiency of dynamic quenching depends upon the viscosity of the solution, the lifetime of the excited state (x ) of the luminescent species, and the concentration of the quencher [Q], This is summarized in the Stern-Volmer equation ... [Pg.75]

Fluorescence quenching is described in terms of two mechanisms that show different dependencies on quencher concentration. In dynamic quenching, the quencher can diffuse at least a few nanometers on the time scale of the excited state lifetime (nanoseconds). In static quenching, mass diffusion is suppressed. Only those dye molecules which are accidentally close to a quencher will be affected. Those far from a quencher will fluoresce normally, unaware of the presence of quenchers in the system. These processes are described below for the specific case of PMMA-Phe quenched by MEK. [Pg.391]

Figure 6. Calculated PMMA-Phe Fluorescence Intensity from Static and Dynamic Quenching Theory as a Function of MEK Concentration. Figure 6. Calculated PMMA-Phe Fluorescence Intensity from Static and Dynamic Quenching Theory as a Function of MEK Concentration.
Following an external perturbation, the fluorescence quantum yield can remain proportional to the lifetime of the excited state (e.g. in the case of dynamic quenching (see Chapter 4), variation in temperature, etc.). However, such a proportionality may not be valid if de-excitation pathways - different from those described above - result from interactions with other molecules. A typical case where the fluorescence quantum yield is affected without any change in excited-state lifetime is the formation of a ground-state complex that is non-fluorescent (static quenching see Chapter 4). [Pg.47]

The excited-state lifetime of the uncomplexed fluorophore M is unaffected, in contrast to dynamic quenching. The fluorescence intensity of the solution decreases upon addition of Q, but the fluorescence decay after pulse excitation is unaffected. Quinones, hydroquinones, purines and pyrimidines are well-known examples of molecules responsible for static quenching. [Pg.85]

Let us consider first the case of static quenching by formation of a non-fluorescent complex. The ratio I0/I obtained for dynamic quenching must be multiplied by the fraction of fluorescent molecules (i.e. uncomplexed)... [Pg.86]

Method II Dynamic quenching by totally micellized immobile quenchers It is assumed that the probability of quenching of a fluorescent probe in a given micelle is proportional to the number of quenchers residing in this micelle. The rate constant for de-excitation of a probe in a micelle containing n quencher molecules is given by... [Pg.87]

Dynamic quenching of fluorescence is described in Section 4.2.2. This translational diffusion process is viscosity-dependent and is thus expected to provide information on the fluidity of a microenvironment, but it must occur in a time-scale comparable to the excited-state lifetime of the fluorophore (experimental time window). When transient effects are negligible, the rate constant kq for quenching can be easily determined by measuring the fluorescence intensity or lifetime as a function of the quencher concentration the results can be analyzed using the Stern-Volmer relation ... [Pg.232]

Figure 10.3. Modified Jablonski diagram for the processes of absorption and fluorescence emission (left), dynamic quenching (middle), and fluorescence resonance energy transfer (FRET) (right). Figure 10.3. Modified Jablonski diagram for the processes of absorption and fluorescence emission (left), dynamic quenching (middle), and fluorescence resonance energy transfer (FRET) (right).
The importance of comparing time-dependent and steady-state fluorescence measurements is well illustrated by the difficulty of resolving purely static from purely dynamic quenching. In either case, the basic relationship between the steady-state fluorescence intensity and quencher concentration is the same. The Stem-Volmer relationship for static quenching due to formation of an intermolecular complex is i... [Pg.18]

By comparing time-resolved and steady-state fluorescence parameters, Ross et alm> have shown that in oxytocin, a lactation and uterine contraction hormone in mammals, the internal disulfide bridge quenches the fluorescence of the single tyrosine by a static mechanism. The quenching complex was attributed to an interaction between one C — tyrosine rotamer and the disulfide bond. Swadesh et al.(()<>> have studied the dithiothreitol quenching of the six tyrosine residues in ribonuclease A. They carefully examined the steady-state criteria that are useful for distinguishing pure static from pure dynamic quenching by consideration of the Smoluchowski equation(70) for the diffusion-controlled bimolecular rate constant k0,... [Pg.19]

Figure 5.3. Simulated Stern-Volmer plots of the ratio of the initial fluorescence intensity F0 to the intensity Fin the presence of quencher of concentration [Q] showing (a)static quenching, (b) dynamic quenching (linear), and (c) binding and/or inaccessible quenchers. Figure 5.3. Simulated Stern-Volmer plots of the ratio of the initial fluorescence intensity F0 to the intensity Fin the presence of quencher of concentration [Q] showing (a)static quenching, (b) dynamic quenching (linear), and (c) binding and/or inaccessible quenchers.
In systems where only dynamic quenching occurs, then steady-state fluorescence intensities can be measured instead of lifetimes/101 103-,07) In experiments where comparisons are being made (i.e., for a comparison of different experimental conditions or types of membrane), it is important that the lifetime of the fluorophore (r0) is not affected by the experimental conditions. Fluorescence intensities can be obtained much more rapidly and without specialized instrumentation. Blatt and Sawyer(101) have employed a relationship essentially the same as Eq. (5.20) in this way. They have pointed out that since the quenching mechanism is collisional, the partition coefficient that is derived is a partition coefficient of the quencher into the immediate environment of the fluorophore and is therefore a local Kp. It is therefore possible to investigate the partition coefficient gradient across the lipid bilayer by using a series of probes, such as the anthroylstearates,(108) located at different depths. In their method, Eq. (5.20) has the form... [Pg.255]

In order to quantify the transition metal ion concentration, Jones et al. [107] developed a highly sensitive fluorescent chemosensor in the form of dialkoxy-phenyleneethynylene-thiophene copolymers 68/69. The PAEs were functionalized on the thiophene unit with terpyridine (68), and included 2,2 -bipyridine (69) as a Lewis acid receptor. The terpyridine polymers [108] were found to respond quantitatively to transition metal ions at concentrations as low as 4x10 M (NP, Hg, Cr ", and Co " ). The additionally used bpy-PAE demonstrates that variation in the chelation at the receptor site is an important variable in tuning selectivity. The observed dynamic quenching mechanism, combined with the solubility of this material, provides the opportunity to extend these initial investigations to thin solid films for use in real-time monitoring applications. [Pg.84]

Because of their high sensitivity, fluorescence detectors are particularly useful in trace analysis when either tire sample size is small or the analyte concentration is extremely low. Although fluorescence detectors can become markedly nonlinear at concentrations where absorption detectors are still linear in response, their linear dynamic range is more than adequate for most trace analysis applications. Unfortunately, fluorometric detectors are often susceptible to background fluorescence and quenching effects that can plague all fluorescence measurements. [Pg.698]

If dynamic quenching in which the quencher exciplex does not regenerate excited monomer is assumed, then the quencher Q reduces the fluorescence intensity according to the following equations ... [Pg.74]


See other pages where Dynamic fluorescence quenching is mentioned: [Pg.236]    [Pg.189]    [Pg.192]    [Pg.194]    [Pg.26]    [Pg.53]    [Pg.74]    [Pg.254]    [Pg.75]    [Pg.80]    [Pg.367]    [Pg.87]    [Pg.336]    [Pg.18]    [Pg.34]    [Pg.77]    [Pg.109]    [Pg.135]    [Pg.253]    [Pg.255]    [Pg.347]    [Pg.348]    [Pg.284]    [Pg.88]    [Pg.84]    [Pg.73]   
See also in sourсe #XX -- [ Pg.74 , Pg.75 , Pg.80 ]

See also in sourсe #XX -- [ Pg.74 , Pg.75 , Pg.80 ]




SEARCH



Dynamics, quenched

Fluorescence dynamics

Fluorescent quenching

Quenching dynamic

© 2024 chempedia.info