Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Standards and standard solutions

The main weakness of such a calibration plot lies in the difficulty of preparing standards and standard solutions to resemble real samples. Human blood plasma samples are surprisingly similar and normal plasma samples spiked with the analyte can often be used to prepare standards for the clinical analysis of the drug by a polarographic analysis. On the other hand natural water samples can vary enormously in composition and preparation of representative standards can often be a major problem. [Pg.218]

The comparison between the finite element and analytical solutions for a relatively small value of a - 1 is shown in Figure 2.25. As can be seen the standard Galerkin method has yielded an accurate and stable solution for the differential Equation (2.80). The accuracy of this solution is expected to improve even further with mesh refinement. As Figmre 2.26 shows using a = 10 a stable result can still be obtained, however using the present mesh of 10 elements, for larger values of this coefficient the numerical solution produced by the standard... [Pg.57]

The procedure is to pass purified hydrogen through a hot solution of the pure acid chloride in toluene or xylene in the presence of the catalyst the exit gases are bubbled through water to absorb the hydrogen chloride, and the solution is titrated with standard alkali from time to time so that the reduction may be stopped when the theoretical quantity of hydrogen chloride has been evolved. Further reduction would lead to the corresponding alcohol and hydrocarbon ... [Pg.691]

Table 11.30 lists standard solutions for precipitation titrations and Table 11.31 lists specific reagents as indicators, adsorption indicators, and protective colloids for precipitation titrations. [Pg.1166]

The list given below includes the substances that are most used and most useful for the standardization of solutions for precipitation titrations. Primary standard solutions are denoted by the letter (P) in Column 1. [Pg.1171]

From J. A. Dean and T. C. Rains, Standard Solutions for Flame Spectrometry, in Flame Emission and Atomic Absorption Spectrometry, J. A. Dean and T. C. Rains (Eds.), Vol. 2, Chap. 13, Marcel Dekker, New York, 1971. [Pg.1184]

Bismuth standard solution (quantitative color test for Bi) dissolve 1 g of bismuth in a mixture of 3 mL of concentrated HNO3 and 2.8 mL of H2O and make up to 100 mL with glycerol. Also dissolve 5 g of KI in 5 mL of water and make up to 100 mL with glycerol. The two solutions are used together in the colorimetric estimation of Bi. [Pg.1188]

The most visible part of the analytical approach occurs in the laboratory. As part of the validation process, appropriate chemical or physical standards are used to calibrate any equipment being used and any solutions whose concentrations must be known. The selected samples are then analyzed and the raw data recorded. [Pg.6]

A standard solution of Mn + was prepared by dissolving 0.250 g of Mn in 10 ml of concentrated HNO3 (measured with a graduated cylinder). The resulting solution was quantitatively transferred to a 100-mL volumetric flask and diluted to volume with distilled water. A 10-mL aliquot of the solution was pipeted into a 500-mL volumetric flask and diluted to volume, (a) Express the concentration of Mn in parts per million, and estimate uncertainty by a propagation of uncertainty calculation, (b) Would the uncertainty in the solution s concentration be improved... [Pg.99]

Three replicate determinations of the signal for a standard solution of an analyte at a concentration of 10.0 ppm give values of 0.163, 0.157, and 0.161 (arbitrary units), respectively. The signal for a method blank was found to be 0.002. Calculate the concentration of analyte in a sample that gives a signal of 0.118. [Pg.131]

The first term, AG°, is the change in Gibb s free energy under standard-state conditions defined as a temperature of 298 K, all gases with partial pressures of 1 atm, all solids and liquids pure, and all solutes present with 1 M concentrations. The second term, which includes the reaction quotient, Q, accounts for nonstandard-state pressures or concentrations. Eor reaction 6.1 the reaction quotient is... [Pg.137]

Inorganic Analysis Acid-base titrimetry is a standard method for the quantitative analysis of many inorganic acids and bases. Standard solutions of NaOH can be used in the analysis of inorganic acids such as H3PO4 or H3ASO4, whereas standard solutions of HCl can be used for the analysis of inorganic bases such as Na2C03. [Pg.300]

CO2 is determined by titrating with a standard solution of NaOH to the phenolphthalein end point, or to a pH of 8.3, with results reported as milligrams CO2 per liter. This analysis is essentially the same as that for the determination of total acidity, and can only be applied to water samples that do not contain any strong acid acidity. [Pg.302]

The purity of a pharmaceutical preparation of sulfanilamide, C6H4N2O2S, can be determined by oxidizing the sulfur to SO2 and bubbling the SO2 through H2O2 to produce H2SO4. The acid is then titrated with a standard solution of NaOH to the bromothymol blue end point, where both of sulfuric acid s acidic protons have been neutralized. Calculate the purity of the preparation, given that a 0.5136-g sample required 48.13 mL of 0.1251 M NaOH. [Pg.305]

Procedure. Select a volume of sample requiring less than 15 mL of titrant to keep the analysis time under 5 min and, if necessary, dilute the sample to 50 mL with distilled water. Adjust the pH by adding 1-2 mL of a pH 10 buffer containing a small amount of Mg +-EDTA. Add 1-2 drops of indicator, and titrate with a standard solution of EDTA until the red-to-blue end point is reached. [Pg.326]

Selection and Standardization of Titrants EDTA is a versatile titrant that can be used for the analysis of virtually all metal ions. Although EDTA is the most commonly employed titrant for complexation titrations involving metal ions, it cannot be used for the direct analysis of anions or neutral ligands. In the latter case, standard solutions of Ag+ or Hg + are used as the titrant. [Pg.327]

Cyanide is determined at concentrations greater than 1 ppm by making the sample alkaline with NaOH and titrating with a standard solution of AgN03, forming the soluble Ag(CN)2 complex. The end point is determined using p-dimethylaminobenzalrhodamine as a visual indicator, with the solution turning from yellow to a salmon color in the presence of excess Ag+. [Pg.327]

Another reducing titrant is ferrous ammonium sulfate, Fe(NH4)2(S04)2 6H2O, in which iron is present in the +2 oxidation state. Solutions of Fe + are normally very susceptible to air oxidation, but when prepared in 0.5 M 1T2S04 the solution may remain stable for as long as a month. Periodic restandardization with K2Cr20y is advisable. The titrant can be used in either a direct titration in which the Fe + is oxidized to Fe +, or an excess of the solution can be added and the quantity of Fe + produced determined by a back titration using a standard solution of Ce + or... [Pg.344]

Experiments are described for determining GO2 in carbonated beverages, NaHG03 in Alka-Seltzer tablets, and the molecular weight of GO2. Garbon dioxide is collected in NaOH and the concentrations of G03 are determined by titrating with a standard solution of HGl to the phenolphthalein and methyl orange end points. [Pg.358]

Solutions containing both Le + and AF+ can be selectively analyzed for Le + by buffering to a pH of 2 and titrating with EDTA. The pH of the solution is then raised to 5 and an excess of EDTA added, resulting in the formation of the AF+-EDTA complex. The excess EDTA is back titrated using a standard solution of Le +, providing an indirect analysis for AF+. [Pg.364]

According to Beer s law, a calibration curve of absorbance versus the concentration of analyte in a series of standard solutions should be a straight line with an intercept of 0 and a slope of ab or eb. In many cases, however, calibration curves are found to be nonlinear (Figure 10.22). Deviations from linearity are divided into three categories fundamental, chemical, and instrumental. [Pg.386]

Two additional methods for determining the composition of a mixture deserve mention. In multiwavelength linear regression analysis (MLRA) the absorbance of a mixture is compared with that of standard solutions at several wavelengths. If Asx and Asy are the absorbances of standard solutions of components X and Y at any wavelength, then... [Pg.401]


See other pages where Standards and standard solutions is mentioned: [Pg.1093]    [Pg.1097]    [Pg.49]    [Pg.50]    [Pg.579]    [Pg.77]    [Pg.150]    [Pg.221]    [Pg.598]    [Pg.834]    [Pg.1000]    [Pg.604]    [Pg.79]    [Pg.932]    [Pg.1065]    [Pg.931]    [Pg.942]    [Pg.106]    [Pg.108]    [Pg.108]    [Pg.111]    [Pg.113]    [Pg.131]    [Pg.300]    [Pg.300]    [Pg.302]    [Pg.358]    [Pg.361]    [Pg.365]    [Pg.365]    [Pg.365]    [Pg.366]    [Pg.366]    [Pg.387]    [Pg.402]   


SEARCH



Activity coefficients and solution standard states

Real solutions, reference and standard states

Solutions and Standards

Solutions and Standards

Solutions standard solution

Solutions standardization

Standard Solutions of Acids, Bases, and

Standard Solutions of Acids, Bases, and Salts

Standard Solutions of Oxidation and

Standard Solutions of Oxidation and Reduction Reagents

Standard solution

Standardized Solutions

© 2024 chempedia.info