Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stainless steels cracking

ISSUE TITLE Cast stainless steel cracking (Cl 11)... [Pg.77]

The orificed fuel support is made of cast stainless steel. Cracking of the supports has not been observed. Based on the material composition, the low stress state of the support, fluences, which remain below the threshold level for lASCC and field experience, neither IGSCC nor LASCC are of concern for the orificed fuel supports. [Pg.59]

Prompted by the success, TOFD measurements were conducted on a fatigue crack in a stainless steel compact tension specimen. Test and system parameters were optimised following the same procedure used for carbon steel specimens. A clear diffracted signal was observed with relatively good SNR and its depth as measured from the time-of-flight measurements matched exactly with the actual depth. [Pg.725]

Considering the success of detecting crack tip echoes from defects at the near probe surface, future work will deal with the detection and sizing of defects on the far probe surface. Future work also relates to carrying out defect sizing in anisotropic austenitic stainless steel welds and... [Pg.725]

The flame-space walls are stainless steel and are water cooled. No mechanical coke scraper is required. A water quench cools the cracked gas stream rapidly at the poiat of maximum acetyleae and this is followed by a secondary water quench. The primary quench poiat can be adjusted for variation ia throughput, to accommodate the depeadeace of acetyleae yield oa resideace time ia the flame space. [Pg.388]

Stainless steel alloys show exceUent corrosion resistance to HCl gas up to a temperature of 400°C. However, these are normally not recommended for process equipment owing to stress corrosion cracking during periods of cooling and shut down. The corrosion rate of Monel is similar to that of mild steel. Pure (99.6%) nickel and high nickel alloys such as Inconel 600 can be used for operation at temperatures up to 525°C where the corrosion rate is reported to be about 0.08 cm/yr (see Nickel and nickel alloys). [Pg.446]

In the case of the fibrous laminate not much work has been done, but it has been observed that a significant loss of stiffness in boron—aluminum laminate occurs when cycled in tension—tension (43,44). Also, in a manner similar to that in the laminated PMCs, the ply stacking sequence affects the fatigue behavior. For example, 90° surface pHes in a 90°/0° sequence develop damage more rapidly than 0° pHes. In the case of laminates made out of metallic sheets, eg, stainless steel and aluminum, further enhanced resistance against fatigue crack propagation than either one of the components in isolation has been observed (45). [Pg.203]

Duplex stainless steels (ca 4% nickel, 23% chrome) have been identified as having potential appHcation to nitric acid service (75). Because they have a lower nickel and higher chromium content than typical austenitic steels, they provide the ductabdity of austenitic SS and the stress—corrosion cracking resistance of ferritic SS. The higher strength and corrosion resistance of duplex steel offer potential cost advantages as a material of constmction for absorption columns (see CORROSION AND CORROSION CONTROL). [Pg.45]

Many instances of intergranular stress corrosion cracking (IGSCC) of stainless steel and nickel-based alloys have occurred in the reactor water systems of BWRs. IGSCC, first observed in the recirculation piping systems (21) and later in reactor vessel internal components, has been observed primarily in the weld heat-affected zone of Type 304 stainless steel. [Pg.195]

Shipment nd Stora.ge, Sulfur monochloride is minimally corrosive to carbon steel and iron when dry. If it is necessary to avoid discoloration caused by iron sulfide formation or chloride stress cracking, 310 stainless steel should be used. Sulfur monochloride is shipped in tank cars, tank tmcks, and steel dmms. When wet, it behaves like hydrochloric acid and attacks steel, cast iron, aluminum, stainless steels, copper and copper alloys, and many nickel-based materials. Alloys of 62 Ni—28 Mo and 54 Ni—15 Cr—16 Mo are useful under these conditions. Under DOT HM-181 sulfur monochloride is classified as a Poison Inhalation Hazard (PIH) Zone B, as well as a Corrosive Material (DOT Hazard Class B). Shipment information is available (140). [Pg.138]

Materials of Construction. GeneraHy, carbon steel is satisfactory as a material of construction when handling propylene, chlorine, HCl, and chlorinated hydrocarbons at low temperatures (below 100°C) in the absence of water. Nickel-based aHoys are chiefly used in the reaction area where resistance to chlorine and HCl at elevated temperatures is required (39). Elastomer-lined equipment, usuaHy PTFE or Kynar, is typicaHy used when water and HCl or chlorine are present together, such as adsorption of HCl in water, since corrosion of most metals is excessive. Stainless steels are to be avoided in locations exposed to inorganic chlorides, as stainless steels can be subject to chloride stress-corrosion cracking. Contact with aluminum should be avoided under aH circumstances because of potential undesirable reactivity problems. [Pg.34]

Corrosion also occurs as a result of the conjoint action of physical processes and chemical or electrochemical reactions (1 3). The specific manifestation of corrosion is deterrnined by the physical processes involved. Environmentally induced cracking (EIC) is the failure of a metal in a corrosive environment and under a mechanical stress. The observed cracking and subsequent failure would not occur from either the mechanical stress or the corrosive environment alone. Specific chemical agents cause particular metals to undergo EIC, and mechanical failure occurs below the normal strength (5aeld stress) of the metal. Examples are the failure of brasses in ammonia environments and stainless steels in chloride or caustic environments. [Pg.274]

Sulfide inclusions have been identified as the origins of pits and stress-corrosion cracks in stainless steel stmctures under some conditions (see... [Pg.280]

Although hydrogen cyanide is a weak acid and is normally not corrosive, it has a corrosive effect under two special conditions (/) water solutions of hydrogen cyanide cause transcrystalline stress cracking of carbon steels under stress even at room temperature and in dilute solution and (2) water solutions of hydrogen cyanide containing sulfuric acid as a stabilizer severely corrode steel (qv) above 40°C and stainless steels above 80°C. [Pg.376]

Corrosion is probably the greatest threat to vessel life. Partially filled vessels frequently have severe pitting at the liquid-vapor interface. Vessels usually do not have a corrosion allowance on the outside. Lack of protec tion against the weather or against the drip of corrosive chemicals can reduce vessel life. Insulation may contain damaging substances. Chlorides in insulating materials can cause cracking of stainless steels. [Pg.1029]

Virtuallv evety alloy system has its specific environment conditions which will prodiice stress-corrosion cracking, and the time of exposure required to produce failure will vary from minutes to years. Typical examples include cracking of cold-formed brass in ammonia environments, cracking of austenitic stainless steels in the presence of chlorides, cracking of Monel in hydrofluosihcic acid, and caustic embrittlement cracking of steel in caustic solutions. [Pg.2418]

These alloys have extensive applications in sulfuric acid systems. Because of their increased nickefand molybdenum contents they are more tolerant of chloride-ion contamination than standard stainless steels. The nickel content decreases the risk of stress-corrosion cracking molybdenum improves resistance to crevice corrosion and pitting. [Pg.2449]

Coupon tests involved a number of metallurgies and were done to evaluate precipitator-plate alloys. Test stainless steel plates failed, not only because of pitting but also because stress-corrosion cracks developed. [Pg.179]

Corrosion of industrial alloys in alkaline waters is not as common or as severe as attack associated with acidic conditions. Caustic solutions produce little corrosion on steel, stainless steel, cast iron, nickel, and nickel alloys under most cooling water conditions. Ammonia produces wastage and cracking mainly on copper and copper alloys. Most other alloys are not attacked at cooling water temperatures. This is at least in part explained by inherent alloy corrosion behavior and the interaction of specific ions on the metal surface. Further, many dissolved minerals have normal pH solubility and thus deposit at faster rates when pH increases. Precipitated minerals such as phosphates, carbonates, and silicates, for example, tend to reduce corrosion on many alloys. [Pg.185]


See other pages where Stainless steels cracking is mentioned: [Pg.157]    [Pg.301]    [Pg.6]    [Pg.83]    [Pg.301]    [Pg.157]    [Pg.301]    [Pg.6]    [Pg.83]    [Pg.301]    [Pg.164]    [Pg.347]    [Pg.347]    [Pg.114]    [Pg.124]    [Pg.195]    [Pg.98]    [Pg.358]    [Pg.336]    [Pg.370]    [Pg.136]    [Pg.188]    [Pg.370]    [Pg.267]    [Pg.267]    [Pg.126]    [Pg.274]    [Pg.280]    [Pg.281]    [Pg.946]    [Pg.1015]    [Pg.1728]    [Pg.2417]    [Pg.2418]    [Pg.2423]    [Pg.6]    [Pg.6]   
See also in sourсe #XX -- [ Pg.354 , Pg.355 , Pg.356 , Pg.357 , Pg.358 , Pg.359 , Pg.360 ]




SEARCH



Austenitic stainless steel stress-corrosion cracking

Austenitic stainless steels cracking

Austenitic stainless steels, caustic cracking

Cracking steels

Duplex stainless steels stress-corrosion cracking

Fatigue crack growth stainless steels

Ferritic stainless steels stress-corrosion cracking

Stainless steels hydrogen cracking

Stainless steels stress corrosion cracking

Stainless steels stress-corrosion cracking, hydrogen

Stress corrosion cracking in stainless steels

© 2024 chempedia.info