Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability temperature dependence

NMR signals of the amino acid ligand that are induced by the ring current of the diamine ligand" ". From the temperature dependence of the stability constants of a number of ternary palladium complexes involving dipeptides and aromatic amines, the arene - arene interaction enthalpies and entropies have been determined" ". It turned out that the interaction is generally enthalpy-driven and counteracted by entropy. Yamauchi et al. hold a charge transfer interaction responsible for this effect. [Pg.89]

Pre-liming. Lime slurry, 0.25% lime on juice (0.250 g of CaO/100 g juice), is added to bring the pH of the mixture into the alkaline range. Insoluble calcium salts are precipitated as finely dispersed coUoids. Calcium carbonate in the form of recycled first carbonation sludge is added to provide coUoid absorption and stabilization. Temperature may be cool (50°C) or hot (80°C) depending on the temperature of the next step, or occasionally on the type of diffusion equipment. Retention time is 15 to 30 min. [Pg.26]

The primary phases all contain impurities. In fact these impurities stabilize the stmctures formed at high temperatures so that decomposition or transformations do not occur during cooling, as occurs with the pure compounds. For example, pure C S exists in at least six polymorphic forms each having a sharply defined temperature range of stability, whereas alite exists in three stabilized forms at room temperature depending on the impurities. Some properties of the more common phases in Portland clinkers are given in Table 2. [Pg.285]

The influence of Zn-deposition on Cu(lll) surfaces on methanol synthesis by hydrogenation of CO2 shows that Zn creates sites stabilizing the formate intermediate and thus promotes the hydrogenation process [2.44]. Further publications deal with methane oxidation by various layered rock-salt-type oxides [2.45], poisoning of vana-dia in VOx/Ti02 by K2O, leading to lower reduction capability of the vanadia, because of the formation of [2.46], and interaction of SO2 with Cu, CU2O, and CuO to show the temperature-dependence of SO2 absorption or sulfide formation [2.47]. [Pg.24]

All packing materials produced at PSS are tested for all relevant properties. This includes physical tests (e.g., pressure stability, temperature stability, permeability, particle size distribution, porosity) as well as chromatographic tests using packed columns (plate count, resolution, peak symmetry, calibration curves). PSS uses inverse SEC methodology (26,27) to determine chromatographic-active sorbent properties such as surface area, pore volume, average pore size, and pore size distribution. Table 9.10 shows details on inverse SEC tests on PSS SDV sorbent as an example. Pig. 9.10 shows the dependence... [Pg.288]

The physical nature of the sulfate complexes formed by plutonium(III) and plutonium(IV) in 1 M acid 2 M ionic strength perchlorate media has been inferred from thermodynamic parameters for complexation reactions and acid dependence of stability constants. The stability constants of 1 1 and 1 2 complexes were determined by solvent extraction and ion-exchange techniques, and the thermodynamic parameters calculated from the temperature dependence of the stability constants. The data are consistent with the formation of complexes of the form PuSOi,(n-2)+ for the 1 1 complexes of both plutonium(III) and plutonium(IV). The second HSO4 ligand appears to be added without deprotonation in both systems to form complexes of the form PuSOifHSOit(n"3) +. ... [Pg.251]

A major goal was to investigate the solid state structures of such compounds by single crystal X-ray diffraction. It was found that Lewis acid-base adducts R3M—ER3 show general structural trends, which allow estimations on the relative stability of the adducts. The experimental results were confirmed by computational calculations, giving even deeper insights into the structural parameters and the thermodynamic stability of simple Lewis acid-base adducts. In addition, their thermodynamic stability in solution was investigated by temperature-dependent NMR spectroscopy. [Pg.121]

Reliable information on the thermodynamic stability of group 13/15 adducts is usually obtained by gas phase measurements. However, due to the lability of stibine and bismuthine adducts in the gas phase toward dissociation, temperature-dependent H-NMR studies are also useful for the determination of their dissociation enthalpies in solution [41b], We focussed on analogously substituted adducts t-BusAl—E(f-Pr)3 (E = P 9, As 10, Sb 11, Bi 12) since they have been fully characterized by single crystal X-ray diffraction, allowing comparisons of their thermodynamic stability in solution with structural trends as found in their solid state structures. [Pg.126]

The NR compound 4 is known to be better under low temperature conditions than the control, but worse under high temperature conditions. Chemically, NR has the lowest thermal stability of the polymers used for tread compounds in tire technology and it has therefore the highest temperature dependence of abrasion and wear. Thus, it is generally accepted that NR has a higher wear resistance in a moderate climate than, for instance, SBR but a much lower one in hot climates. This will be thoroughly documented below under tire wear. [Pg.741]

Herrmann et al. reported for the first time in 1996 the use of chiral NHC complexes in asymmetric hydrosilylation [12]. An achiral version of this reaction with diaminocarbene rhodium complexes was previously reported by Lappert et al. in 1984 [40]. The Rh(I) complexes 53a-b were obtained in 71-79% yield by reaction of the free chiral carbene with 0.5 equiv of [Rh(cod)Cl]2 in THF (Scheme 30). The carbene was not isolated but generated in solution by deprotonation of the corresponding imidazolium salt by sodium hydride in liquid ammonia and THF at - 33 °C. The rhodium complexes 53 are stable in air both as a solid and in solution, and their thermal stability is also remarkable. The hydrosilylation of acetophenone in the presence of 1% mol of catalyst 53b gave almost quantitative conversions and optical inductions up to 32%. These complexes are active in hydrosilylation without an induction period even at low temperatures (- 34 °C). The optical induction is clearly temperature-dependent it decreases at higher temperatures. No significant solvent dependence could be observed. In spite of moderate ee values, this first report on asymmetric hydrosilylation demonstrated the advantage of such rhodium carbene complexes in terms of stability. No dissociation of the ligand was observed in the course of the reaction. [Pg.210]

A plot of the adatom density versus T is shown in Fig. 4. An anomalous increase in the density is observed at high temperatures. The dashed line represents the adatom population that would be predicted if there were no lateral interactions. However, the LJ potential between adatoms tends to stabilize them at the higher coverages, and it is this effect that causes the deviation from Arrhenius behavior at high temperatures. A similar temperature dependence is observed in the rate of mass transport on some metal surfaces (8,9), and it is possible that it is caused by the enhanced population of the superlayer at high temperatures. [Pg.222]

What is the nature of the defects seen in the EPR spectra For alkali and alkali earth halogenides it is well known that irradiation with X-ray, neutrons, gamma-radiation, or electrons produce paramagnetic color centers (F-center) [109-111]. If these centers are created in large amounts, they can be stabilized by the formation of metal clusters as observed for MgCl2 films after prolonged electron radiation [106]. From the temperature dependence... [Pg.134]

The electrical DC and AC response of compacts of ligand-stabilized nanoclusters also reflects the electrical behavior of the 3D system [21]. At high temperature, i.e. several tens of Kelvin below room temperature, the temperature dependent DC and AC conductivity follows a simply activated behavior according to the... [Pg.122]

Temperature variation may also be a relevant factor in flowrate stability. Since the viscosity of the solvent is temperature dependent, wide swings in the ambient temperature can directly affect pump performance. The direct effects of temperature on pump performance usually are far smaller, however, than the effects on retention and selectivity therefore, control of column temperature is generally sufficient to obtain high reproducibility. [Pg.4]


See other pages where Stability temperature dependence is mentioned: [Pg.637]    [Pg.112]    [Pg.78]    [Pg.637]    [Pg.112]    [Pg.78]    [Pg.2902]    [Pg.146]    [Pg.445]    [Pg.28]    [Pg.372]    [Pg.373]    [Pg.218]    [Pg.112]    [Pg.217]    [Pg.141]    [Pg.628]    [Pg.79]    [Pg.94]    [Pg.30]    [Pg.49]    [Pg.131]    [Pg.778]    [Pg.280]    [Pg.91]    [Pg.72]    [Pg.77]    [Pg.247]    [Pg.401]    [Pg.189]    [Pg.255]    [Pg.394]    [Pg.114]    [Pg.140]    [Pg.56]    [Pg.81]    [Pg.37]    [Pg.170]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Stability temperature

© 2024 chempedia.info