Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability anodic oxide

Similar considerations apply to oxidation. An anion which is considerably more stable than water will be unaffected in the neighbourhood of the anode. With a soluble anode, in principle, an anion only needs be more stable than the dissolution potential of the anode metal, but with an insoluble anode it must be stable at the potential for water oxidation (equation 12.4 or 12.5) plus any margin of polarisation. The metal salts, other than those of the metal being deposited, used for electroplating are chosen to combine solubility, cheapness and stability to anode oxidation and cathode reduction. The anions most widely used are SOj", Cl", F and complex fluorides BF4, SiFj , Br , CN and complex cyanides. The nitrate ion is usually avoided because it is too easily reduced at the cathode. Sulphite,... [Pg.343]

Anodic oxidation often involves the formation of films on the surface, i.e. of a solid phase formed of salts or complexes of the metals with solution components. They often appear in the potential region where the electrode, covered with the oxidation product, can function as an electrode of the second kind. Under these conditions the films are thermodynamically stable. On the other hand, films are sometimes formed which in view of their solubility product and the pH of the solution should not be stable. These films are stabilized by their structure or by the influence of surface forces at the interface. [Pg.388]

Environmental tests have been combined with conventional electrochemical measurements by Smallen et al. [131] and by Novotny and Staud [132], The first electrochemical tests on CoCr thin-film alloys were published by Wang et al. [133]. Kobayashi et al. [134] reported electrochemical data coupled with surface analysis of anodically oxidized amorphous CoX alloys, with X = Ta, Nb, Ti or Zr. Brusic et al. [125] presented potentiodynamic polarization curves obtained on electroless CoP and sputtered Co, CoNi, CoTi, and CoCr in distilled water. The results indicate that the thin-film alloys behave similarly to the bulk materials [133], The protective film is less than 5 nm thick [127] and rich in a passivating metal oxide, such as chromium oxide [133, 134], Such an oxide forms preferentially if the Cr content in the alloy is, depending on the author, above 10% [130], 14% [131], 16% [127], or 17% [133], It is thought to stabilize the non-passivating cobalt oxides [123], Once covered by stable oxide, the alloy surface shows much higher corrosion potential and lower corrosion rate than Co, i.e. it shows more noble behavior [125]. [Pg.274]

The true role of incorporation of anions in the formation of anodic alumina is being intensively discussed. Baker and Pearson183 have considered the anion effect in modifying the structure of anodic oxides to be due to the coordinative ability of anions to replace alumina tetrahedra in the body of the oxides. Dorsey184,185 has postulated that in porous oxides, anions stabilize the network of alumina tetrahedra and octahedra. [Pg.457]

The anodic oxidation of the tetrafluoroborate anion occurs at potentials higher than 2.1 V and the remaining hexafluorophosphate and imide anions are oxidised at potentials higher than 2.0 V. Hence, the stability window of the EMImBF4 and BMImBF4 is 4.2 V. Ionic liquids BMImPF6 and EMImN(Tf)2 shows a similar stability window of ca. 4.1 V. However, the window of the BMPyN(Tf)2, is considerably lower ca. 3.0 V. This is consistent with data (ca. 4.1-4.2 V) found for a series of ionic liquids based on EMIm+ and DMPIm+ (l,2-dimethyl-3-propylimidazolium) cations [12],... [Pg.103]

This result suggests that in the anodic oxidation of type B, the cation radical formed from one of the two double bonds is stabilized through transannular interaction with another double bond. [Pg.762]

It should be recognized that the stability of cation radicals generated by anodic oxidation is also affected by jS-silyl substitution. Stabilization of car-bocations by a silyl group situated at the -position is well known as the / effect . The interaction of the C Si a orbital with the empty p orbital of the carbon stabilizes the carbocation. Therefore, we can expect similar effects of silicon for cation radical species. The interaction of the filled C-Si a orbital with the half-filled orbital of the carbon may stabilize the cation radical. [Pg.54]

The thermodynamic stabilities of phenonium ions have been determined based on bromide-transfer equilibria in the gas phase and, depending on the substituents, the bridged species (1) has been proposed as an intermediate or transition state on the potential-energy surface for the 1,2-aryl rearrangement of triarylvinyl cations (see Scheme 1). Phenonium ion (3) has been presented as an intermediate to account for the fact that lactonization of methyl 4-aryl-5-tosyloxy hexanoate (2) produces y-lactone (4) selectively under thermodynamic conditions, but affords 5-lactone (5) preferentially under kinetic conditions. It has been shown that anodic oxidation of frany-stilbene in alcohols in the presence of KF or BU4NBF4 is accompanied by its electro-oxidative rearrangement into diphenylacetaldehyde acetals. The mechanism outlined in Scheme 2 has been proposed" for the transformation. [Pg.487]

Anodic oxidation in inert solvents is the most widespread method of cation-radical preparation, with the aim of investigating their stability and electron structure. However, saturated hydrocarbons cannot be oxidized in an accessible potential region. There is one exception for molecules with the weakened C—H bond, but this does not pertain to the cation-radical problem. Anodic oxidation of unsaturated hydrocarbons proceeds more easily. As usual, this oxidation is assumed to be a process including one-electron detachment from the n system with the cation-radical formation. This is the very first step of this oxidation. Certainly, the cation-radical formed is not inevitably stable. Under anodic reaction conditions, it can expel the second electron and give rise to a dication or lose a proton and form a neutral (free) radical. The latter can be either stable or complete its life at the expense of dimerization, fragmentation, etc. Nevertheless, electrochemical oxidation of aromatic hydrocarbons leads to cation-radicals, the nature of which is reliably established (Mann and Barnes 1970 Chapter 3). [Pg.90]

Radical cations of 2-alkylidene-l,3-dithianes can be generated electrochemically by anodic oxidation using a reticulated vitreous carbon (RVC) anode <2002TL7159>. These intermediates readily react with nucleophiles at C-1. Upon removal of the second electron, the sulfur-stabilized cations were trapped by nucleophilic solvents, such as MeOH, to furnish the final cycloaddition products. Hydroxy groups <20010L1729> and secondary amides <2005OL3553> were employed as O-nucleophiles and enol ethers as C-nucleophiles (Scheme 50) <2002JA10101>. [Pg.796]

Aqueous solutions of In1 in low concentration can be prepared by the anodic oxidation of the metal,21 but the strong reducing properties of In+(aq) bar this as a route to complexes. The rate of disappearance of In1 in various media has been used to derive stability constants for InVX- species.22,23... [Pg.155]

The results of this kinetic analysis have been included in Table I. It can be seen that, if both the anodic decomposition of the semiconductor and the anodic oxidation of the competing reactant would occur by irreversible hole-capture steps ((L)(H)(I) or (M)(H)(1)), as was hitherto generally accepted, the stabilization should be independent of light intensity, in contradiction with the results described above. The mechanism in which the reducing agent reacts by donating an electron to a localized surface hole ((L)(X)) leads to an expression in which s is a function of the variable (y/j) only. The three other mechanisms considered lead to the relationship of the type (18), in which s is a function of (y2/j). [Pg.126]

A typical cyclic voltammetric trace for the anodic oxidation of the fluorenyl anion 2 at platinum is shown in Figure 1. The oxidation potential for this and several other resonance stabilized carbanions lies conveniently within the band gap of n-type Ti02 in the non-aqueous solvents, and hence in a range susceptible to photoinduced charge transfer. Furthermore, dimeric products (e. g., bifluorenyl) can be isolated in good yield (55-80%) after a one Faraday/mole controlled potential (+1.0 eV vs Ag quasireference) oxidation at platinum. [Pg.339]

The observed E0 values in this case indicate the highest stability of rhenium (V) derivatives in this series. The comparison of the preparative data published indicates that these are the +5 and +6 oxidation states that appear to be most stable for the alkoxocomplexes of rhenium. The low-valent (+1 — +3) complexes should either be stabilized by JT-acceptor ligands (CO, PR3, NO, unsaturated hydrocarbons) or contain multiple M M bonds [321, 586, 729, 762,]. The compounds of rhenium (VII) are very unstable and decompose at room temperature in several minutes when isolated. They can be isolated and kept for several days as the complexes with N-donor ligands such as Tmeda or Py [533, 519, 1358]. The decomposition products of rhenium (VI) and (VIT) alkoxides are often described in literature as a black tar. The compound with this kind of appearence turned to be the major product of the anodic oxidation of rhenium in methanol (at high current density) and was shown by the X-ray single crystal study to be Re402(0Me)16 [906]. [Pg.474]

Anodic oxidation in inert solvents is the most widespread method for cation radical preparation, with the aim of investigating their stability and electron structure. However, saturated hydrocarbons cannot be oxidized in an accessible potential region. There is one exception for molecules with the weakened C—H bond, but this does not pertain to the cation radical problem. [Pg.94]

Electrochemical methods are very useful in structural studies but are barely applicable for preparative aims. The cause is the limited stability of cation radicals. It is difficult to do low-temperature preparative electrolysis, and the main problem is to dispose of the large amount of heat generated during the electrode work. That is, not much current can be passed through an ordinary-sized electrode without generating too much heat. When potential and temperature control are necessary, only small quantities of a material can be obtained in a reasonable period of time. When potential and temperature control are not necessary, as in Kolbe electrolysis, anodic oxidation is indeed useful as a preparative method. [Pg.94]


See other pages where Stability anodic oxide is mentioned: [Pg.115]    [Pg.1181]    [Pg.944]    [Pg.179]    [Pg.322]    [Pg.51]    [Pg.101]    [Pg.125]    [Pg.488]    [Pg.114]    [Pg.231]    [Pg.694]    [Pg.64]    [Pg.71]    [Pg.104]    [Pg.132]    [Pg.17]    [Pg.70]    [Pg.84]    [Pg.12]    [Pg.90]    [Pg.5]    [Pg.258]    [Pg.635]    [Pg.484]    [Pg.241]    [Pg.282]    [Pg.237]    [Pg.99]    [Pg.483]    [Pg.115]    [Pg.471]    [Pg.200]    [Pg.1188]   
See also in sourсe #XX -- [ Pg.48 , Pg.51 ]




SEARCH



Anode oxidation

Anodes oxides

Anodic oxidation

Anodic oxides

OXIDATION OXIDATIVE STABILITY

Oxidative stability

Oxidative stabilizers

Stability anode

Stability oxides

© 2024 chempedia.info