Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy. Atomic absorption, Molecular

Horwitz claims that irrespective of the complexity found within various analytical methods the limits of analytical variability can be expressed or summarized by plotting the calculated mean coefficient of variation (CV), expressed as powers of two [ordinate], against the analyte level measured, expressed as powers of 10 [abscissa]. In an analysis of 150 independent Association of Official Analytical Chemists (AOAC) interlaboratory collaborative studies covering numerous methods, such as chromatography, atomic absorption, molecular absorption spectroscopy, spectrophotometry, and bioassay, it appears that the relationship describing the CV of an analytical method and the absolute analyte concentration is independent of the analyte type or the method used for detection. [Pg.483]

Sources that emit a few discrete lines find wide use in atomic absorption spectroscopy, atomic and molecular fluorescence spectroscopy, artd Raman spectroscopy (refractomeiry and polarimciry also u.se line sources). The familiar mercury and sodium vapor lamps provide a relatively few sharp lines in the ultraviolet and visible regions and are used in several spectroscopic instruments. I loilow-cathodc lamps and clectrodelcss discharge lamps are the most important line sourcc.s for atomic absorption and fluorescence methods. Discussion of such sources is deferred to Section 9H- . [Pg.168]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

Atomic and Molecular Energy Levels. Absorption and emission of electromagnetic radiation can occur by any of several mechanisms. Those important in spectroscopy are resonant interactions in which the photon energy matches the energy difference between discrete stationary energy states (eigenstates) of an atomic or molecular system = hv. This is known as the Bohr frequency condition. Transitions between... [Pg.311]

It should be noted that in atomic absorption spectroscopy, as with molecular absorption, the absorbance A is given by the logarithmic ratio of the intensity of the incident light signal I0 to that of the transmitted light / i.e. [Pg.782]

The quantum theory of spectral collapse presented in Chapter 4 aims at even lower gas densities where the Stark or Zeeman multiplets of atomic spectra as well as the rotational structure of all the branches of absorption or Raman spectra are well resolved. The evolution of basic ideas of line broadening and interference (spectral exchange) is reviewed. Adiabatic and non-adiabatic spectral broadening are described in the frame of binary non-Markovian theory and compared with the impact approximation. The conditions for spectral collapse and subsequent narrowing of the spectra are analysed for the simplest examples, which model typical situations in atomic and molecular spectroscopy. Special attention is paid to collapse of the isotropic Raman spectrum. Quantum theory, based on first principles, attempts to predict the. /-dependence of the widths of the rotational component as well as the envelope of the unresolved and then collapsed spectrum (Fig. 0.4). [Pg.7]

Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union... Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union...
Other frequently used methods for determining fluoride include ion and gas chromatography [150,204,205] and aluminium monofluoride (AIF) molecular absorption spectrometry [206,207]. Less frequently employed methods include enzymatic [208], catalytic [209], polarographic [210] and voltammetric methods [211], helium microwave-induced [212] or inductively coupled plasma atomic emission spectrometry [213], electrothermal atomic absorption spectrometry [214], inductively coupled plasma-mass spectrometry [215], radioactivation [216], proton-induced gamma emission [217], near-infrared spectroscopy [218] and neutron activation analysis [219]. [Pg.534]

Atomic absorption follows an exponential relationship between the intensity / of transmitted light and the absorption path length 1, which is similar to Lambert s law in molecular spectroscopy ... [Pg.15]

This book is rooted in an informal discussion with three researchers. Dr Alatzne Carlosena, Dr Monica Felipe and Dr Maria Jesus Cal, after they had some problems measuring antimony in soils and sediments by electrothermal atomic absorption spectrometry. While we reviewed the results and debated possible problems, much like in a brainstorming session, I realized that some of their difficulties were highly similar to those found in molecular spectrometry (mid-IR spectroscopy, where I had some experience), namely a lack of peak reproducibility, noise, uncontrollable amounts of concomitants, possible matrix interferences, etc. [Pg.324]

An important difference between atomic and molecular spectroscopy is the width of absorption or emission bands. Spectra of liquids and solids typically have bandwidths of — 100 nm, as in Figures 18-7 and 18-14. In contrast, spectra of gaseous atoms consist of sharp lines with widths of —0.001 nm (Figure 21-3). Lines are so sharp that there is usu-... [Pg.454]

Fundamental requirements for an atomic absorption experiment are shown in Figure 21-2. Principal differences between atomic and ordinary molecular spectroscopy lie in the light source (or lack of a light source in atomic emission), the sample container (the flame, furnace, or plasma), and the need to subtract background emission. [Pg.462]

Since the photochemical reaction is initiated by absorption of light in the visible, ultraviolet, and vacuum ultraviolet regions, an understanding of atomic and molecular spectroscopy is required. Chapter I gives a brief introduction to the electronic stales and transitions in atoms and simple molecules. [Pg.147]

Metals can be conveniently determined by emission spectroscopy using inductively coupled plasma (ICP). A great advantage of ICP emission spectroscopy as applied to environmental analysis is that several metals can be determined simultaneously by this method. Thus, multielement analysis of unknown samples can be performed rapidly by this technique. Another advantage is that, unlike atomic absorption spectroscopy, the chemical interference in this method is very low. Chemical interferences are generally attributed to the formation of molecular compounds (from the atoms) as well as to ionization and thermochemical effects. The principle of the ICP method is described below. [Pg.90]

GC, gas chromatography HPLC, high-performance liquid chromatography MS, mass spectroscopy AA, atomic absorption GFAA, graphite furnace atomic absorption ICP, inductively coupled plasma UV-VIS, ultraviolet-visible molecular absorption spectroscopy IC, ion chromatography. [Pg.4]

The base promotes the formation of a phenolate ion, which undergoes a one-electron oxidation to form Cu(I) and a phenoxy radical. Two of these radicals combine to give the 4,4/-dihydroxybiphenyl compound, which can be further dehydrogenated to give the diphenoquinone. Within the detection limit of atomic absorption spectroscopy no Cu was observed in solution. Cu retention on the molecular sieve in this case is favored by the apolarity of the solvent, the absence of competing anions (e.g., acetate in solution), and the presence of base, with the latter promoting formation of copper hydroxides. [Pg.35]


See other pages where Spectroscopy. Atomic absorption, Molecular is mentioned: [Pg.60]    [Pg.26]    [Pg.89]    [Pg.443]    [Pg.344]    [Pg.288]    [Pg.582]    [Pg.179]    [Pg.195]    [Pg.1135]    [Pg.270]    [Pg.276]    [Pg.27]    [Pg.574]    [Pg.211]    [Pg.11]    [Pg.16]    [Pg.3]    [Pg.87]    [Pg.1532]    [Pg.372]    [Pg.465]    [Pg.237]    [Pg.79]    [Pg.95]    [Pg.251]    [Pg.33]   


SEARCH



Absorption molecular

Atomic absorption spectroscopy

Atomic spectroscopy

Molecular absorption spectroscopy

Molecular spectroscopy

© 2024 chempedia.info