Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectral Spectroscopy

Wliat does one actually observe in the experunental spectrum, when the levels are characterized by the set of quantum numbers n. Mj ) for the nonnal modes The most obvious spectral observation is simply the set of energies of the levels another important observable quantity is the intensities. The latter depend very sensitively on the type of probe of the molecule used to obtain the spectmm for example, the intensities in absorption spectroscopy are in general far different from those in Raman spectroscopy. From now on we will focus on the energy levels of the spectmm, although the intensities most certainly carry much additional infonnation about the molecule, and are extremely interesting from the point of view of theoretical dynamics. [Pg.63]

It should be emphasized that isomerization is by no means the only process involving chemical reactions in which spectroscopy plays a key role as an experimental probe. A very exciting topic of recent interest is the observation and computation [73, 74] of the spectral properties of the transition state [6]—catching a molecule in the act as it passes the point of no return from reactants to products. Furthennore, it has been discovered from spectroscopic observation [75] that molecules can have motions that are stable for long times even above the barrier to reaction. [Pg.74]

XPS is also often perfonned employing syncln-otron radiation as the excitation source [59]. This technique is sometimes called soft x-ray photoelectron spectroscopy (SXPS) to distinguish it from laboratory XPS. The use of syncluotron radiation has two major advantages (1) a much higher spectral resolution can be achieved and (2) the photon energy of the excitation can be adjusted which, in turn, allows for a particular electron kinetic energy to be selected. [Pg.308]

High-resolution spectroscopy used to observe hyperfme structure in the spectra of atoms or rotational stnicture in electronic spectra of gaseous molecules connnonly must contend with the widths of the spectral lines and how that compares with the separations between lines. Tln-ee contributions to the linewidth will be mentioned here tlie natural line width due to tlie finite lifetime of the excited state, collisional broadening of lines, and the Doppler effect. [Pg.1143]

The study of small energy gaps in matter using the optical spectral region (say the near-IR, visible and UV) offers many advantages over direct one-photon spectroscopies in the IR, far IR or even the microwave. First,... [Pg.1178]

Unlike the typical laser source, the zero-point blackbody field is spectrally white , providing all colours, CO2, that seek out all co - CO2 = coj resonances available in a given sample. Thus all possible Raman lines can be seen with a single incident source at tOp Such multiplex capability is now found in the Class II spectroscopies where broadband excitation is obtained either by using modeless lasers, or a femtosecond pulse, which on first principles must be spectrally broad [32]. Another distinction between a coherent laser source and the blackbody radiation is that the zero-point field is spatially isotropic. By perfonuing the simple wavevector algebra for SR, we find that the scattered radiation is isotropic as well. This concept of spatial incoherence will be used to explain a certain stimulated Raman scattering event in a subsequent section. [Pg.1197]

Nonnal spontaneous Raman scahering suffers from lack of frequency precision and thus good spectral subtractions are not possible. Another limitation to this technique is that high resolution experiments are often difficult to perfomi [39]. These shortcomings have been circumvented by the development of Fourier transfomi (FT) Raman spectroscopy [40]. FT Raman spectroscopy employs a long wavelength laser to achieve viable interferometry. [Pg.1199]

In addition to the many applications of SERS, Raman spectroscopy is, in general, a usefiil analytical tool having many applications in surface science. One interesting example is that of carbon surfaces which do not support SERS. Raman spectroscopy of carbon surfaces provides insight into two important aspects. First, Raman spectral features correlate with the electrochemical reactivity of carbon surfaces this allows one to study surface oxidation [155]. Second, Raman spectroscopy can probe species at carbon surfaces which may account for the highly variable behaviour of carbon materials [155]. Another application to surfaces is the use... [Pg.1214]

Depending on the relative phase difference between these temis, one may observe various experimental spectra, as illustrated in figure Bl.5.14. This type of behaviour, while potentially a source of confiision, is familiar for other types of nonlinear spectroscopy, such as CARS (coherent anti-Stokes Raman scattering) [30. 31] and can be readily incorporated mto modelling of measured spectral features. [Pg.1295]

In electron-spin-echo-detected EPR spectroscopy, spectral infomiation may, in principle, be obtained from a Fourier transfomiation of the second half of the echo shape, since it represents the FID of the refocused magnetizations, however, now recorded with much reduced deadtime problems. For the inhomogeneously broadened EPR lines considered here, however, the FID and therefore also the spin echo, show little structure. For this reason, the amplitude of tire echo is used as the main source of infomiation in ESE experiments. Recording the intensity of the two-pulse or tliree-pulse echo amplitude as a function of the external magnetic field defines electron-spm-echo- (ESE-)... [Pg.1577]

Closs G L and Forbes M D E 1991 EPR spectroscopy of electron spin polarized biradicals in liquid solutions. Technique, spectral simulation, scope and limitations J. Phys. Chem. 95 1924-33... [Pg.1620]

Pump-probe absorption experiments on the femtosecond time scale generally fall into two effective types, depending on the duration and spectral width of the pump pulse. If tlie pump spectrum is significantly narrower in width than the electronic absorption line shape, transient hole-burning spectroscopy [101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112 and 113] can be perfomied. The second type of experiment, dynamic absorption spectroscopy [57, 114. 115. 116. 117. 118. 119. 120. 121 and 122], can be perfomied if the pump and probe pulses are short compared to tlie period of the vibrational modes that are coupled to the electronic transition. [Pg.1979]

Molecular spectroscopy offers a fiindamental approach to intramolecular processes [18, 94]. The spectral analysis in temis of detailed quantum mechanical models in principle provides the complete infomiation about the wave-packet dynamics on a level of detail not easily accessible by time-resolved teclmiques. [Pg.2141]

Ambrose W P and Moerner W E 1991 Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal Nature 349 225-7... [Pg.2506]

Tittel J, Kettner R, Basche T, Brauchle C, Quante FI and Mullen K 1995 Spectral diffusion in an amorphous polymer probed by single molecule spectroscopy J. Lumin. 64 1-11... [Pg.2507]

Skinner J L 1997 Theoretical models for the spectral dynamics of individual molecules in solids Single Molecule Optical Detection, Imaging and Spectroscopy ed T Basche, W E Moerner, M Orrit and U P Wild (Weinheim VCFI)... [Pg.2507]

Relaxation kinetics may be monitored in transient studies tlirough a variety of metliods, usually involving some fonn of spectroscopy. Transient teclmiques and spectrophotometry are combined in time resolved spectroscopy to provide botli tire stmctural infonnation from spectral measurements and tire dynamical infonnation from kinetic measurements that are generally needed to characterize tire mechanisms of relaxation processes. The presence and nature of kinetic intennediates, metastable chemical or physical states not present at equilibrium, may be directly examined in tliis way. [Pg.2946]


See other pages where Spectral Spectroscopy is mentioned: [Pg.584]    [Pg.80]    [Pg.253]    [Pg.264]    [Pg.264]    [Pg.268]    [Pg.805]    [Pg.873]    [Pg.1174]    [Pg.1200]    [Pg.1233]    [Pg.1235]    [Pg.1236]    [Pg.1248]    [Pg.1295]    [Pg.1325]    [Pg.1439]    [Pg.1547]    [Pg.1567]    [Pg.1572]    [Pg.1578]    [Pg.1582]    [Pg.1607]    [Pg.1716]    [Pg.1781]    [Pg.1788]    [Pg.1948]    [Pg.1968]    [Pg.1976]    [Pg.2474]    [Pg.2495]    [Pg.2788]    [Pg.2949]    [Pg.2949]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Absorption spectroscopy spectral details

Electron nuclear double resonance spectroscopy spectral resolution

Fourier-transform infrared spectroscopy spectral results

Infrared spectroscopy spectral calibration

Infrared spectroscopy spectral databases

Magnetic resonance spectroscopy spectral parameters

Raman spectroscopy spectral range

Spectral Auger electron spectroscopy

Spectral interferences plasma emission spectroscopy

Spectral interferences, atomic spectroscopy

Spectral overlap, absorption spectroscopy

Spectroscopy spectral analysis

Spectroscopy spectral calibration

Spectroscopy spectral function

© 2024 chempedia.info