Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorption minerals

Comparison of Atrazine and Alachlor Sorption, Mineralization, and Degradation Potential in Surface and Aquifer Sediments... [Pg.199]

Al ough alachlor is no longer used in the U.S., the three chemical compounds have very similar structural (Figure 1) and chemical properties. Alachlor degradataion data may be useful as a model for this chemical class. Caution must be used in interpolating these data however since the ESA metabolite of metolachlor is formed more slowly and at lower concentrations in soil (18). The objective of this study was to compare atrazine and alachlor sorption, mineralization, and degradation potential, processes that are major contributors to the environmental fate of pesticides, from surface soil to aquifer sediments in laboratoiy studies. In addition, ctegradation of alachlor was compared under aerobic and anaerobic conditions. [Pg.204]

Volatilization. The susceptibility of a herbicide to loss through volatilization has received much attention, due in part to the realization that herbicides in the vapor phase may be transported large distances from the point of application. Volatilization losses can be as high as 80—90% of the total applied herbicide within several days of application. The processes that control the amount of herbicide volatilized are the evaporation of the herbicide from the solution or soHd phase into the air, and dispersal and dilution of the resulting vapor into the atmosphere (250). These processes are influenced by many factors including herbicide application rate, wind velocity, temperature, soil moisture content, and the compound s sorption to soil organic and mineral surfaces. Properties of the herbicide that influence volatility include vapor pressure, water solubility, and chemical stmcture (251). [Pg.48]

Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

In Figure 1 dashed squares refer to water bodies, while solid squares refer to solid matter (also containing some water). Plutonium may appear in any of these squares. The ratio of the concentration of plutonium in two adjacent squares is usually referred to as the concentration factor (CF usually from the water to the solid substance), the transfer coefficient (TC usually between two biological species), or the sorption ratio (or between minerals and water). To avoid ambiguity, we shall use the expression distribution coefficient (abbreviated Kd) with unit dimension (Pu amount per kg product divided by Pu amount per kg source). For the transfer of plutonium from A to B, Pu(A) ->- Pu(B), we define... [Pg.278]

In the presence of mineral phases containing anions that would form sparingly soluble compounds (e.g. POt - and F for the lower oxidation states) an enhanced plutonium uptake due to chemisorption can be expected (57). For plutonium in the higher oxidation states the formation of anionic carbonate complexes would drastically reduce the sorption on e.g oxide and silicate surfaces. [Pg.287]

The sorption of plutonium on a variety of the common minerals of igneous rocks under groundwater conditions is illustrated in Figure 3 (57, 58, 59). For comparison the sorption of other acti-... [Pg.287]

Sorption of plutonium (l.fixlO-11 M) and americium (2xl0-9 M) in artificial groundwater (salt concentration 300 mg/liter total carbonate 120 mg/liter Ref. 59) on some geologic minerals, quartz, biotite, o apatite, o attapulgite, montmorillonite. Dashed lines indicate the range for major minerals in igneous rocks. Experimental conditions room temperature, particle size 0.04-0.06 mm, solid/liquid ratio 6-10 g/1, aerated system, contact time 6 days. [Pg.288]

Plutonium is transported by the groundwater in fractures in the rock (usually <1 mm wide). A typical groundwater velocity (vw) at >100 m depth in Swedish bedrock is 0.1 tn/y. The fractures are filled with crushed, weathered, clayish minerals, which have a high capacity to sorb the plutonium. Assuming instantaneous and reversible reactions, the sorption will cause the plutonium to move considerably slower (with velocity vn) than the groundwater. The ratio between these two velocities is referred to as the retention factor (RF), defined by... [Pg.291]

Stauffer TB, MacIntyre WG. 1986. Sorption of low-polarity organic compounds on oxide minerals and aquifer material. Environ Toxicol Chem 5 949-955. [Pg.291]

Subba-Rao RV, M Alexander (1982) Effect of sorption on mineralization of low concentrations of aromatic compounds in lake water samples. Appl Environ Microbiol 44 659-668. [Pg.239]

Figure 7. U(VI) sorption onto muscovite (7a, Schmeide et al. 2000) and hematite (7b, Lenhart and Honeyman 1999) in the absence (U) and in the presence of humic acid (U+HA). 7a [U02 ] = 1 pmol/L, [HA] = 5 mg/L, muscovite content of about 1.2g/L. Complexation of U with HA in solution and onto mineral surface may influence U sorption. For instance, U sorption onto muscovite is enhanced in presence of HA at low pH. 7b [U] = 1 jamol/L, [HA] = 10 mg/L. Hematite content in solution = 0.9 and 9g/L. Uptake of U increases with increasing hematite content. In presence of hematite, an increase of U sorption onto hematite is observed at low pH, especially at low hematite content. Figure 7. U(VI) sorption onto muscovite (7a, Schmeide et al. 2000) and hematite (7b, Lenhart and Honeyman 1999) in the absence (U) and in the presence of humic acid (U+HA). 7a [U02 ] = 1 pmol/L, [HA] = 5 mg/L, muscovite content of about 1.2g/L. Complexation of U with HA in solution and onto mineral surface may influence U sorption. For instance, U sorption onto muscovite is enhanced in presence of HA at low pH. 7b [U] = 1 jamol/L, [HA] = 10 mg/L. Hematite content in solution = 0.9 and 9g/L. Uptake of U increases with increasing hematite content. In presence of hematite, an increase of U sorption onto hematite is observed at low pH, especially at low hematite content.
Geckeis H, Klenze R, Kim J1 (1999) Solid-water interface reactions of actinides and homologues sorption onto mineral surfaces. Radiochim Acta 87 13-21... [Pg.571]

Pabalan RT, Turner DR, Bertetti FP, Prikryl JD (1998) Uranium(VI) sorption onto selected mineral surfaces. In Adsorption of Metals by Geomedia. Jenne EA (ed) Academic Press, San Francisco, p 99-130... [Pg.574]

Schmeide K, Pompe S, Buhner M, Heise KH, Bernhard G, Nitsche H (2000) Uranium (VI) sorption onto phyllite and selected minerals in the presence of humic acid. Radiochim Acta 88 723-728 Schwarcz HP, Latham AG (1989) Dirty calcites 1. Uranium series dating of contaminated calcite using leachate alone. Chem Geol 80 35-43... [Pg.575]

Pyrite is not only one of the key compounds in Wachtershauser s theory, but could also have fulfilled an important function for phosphate chemistry in prebiotic syntheses. A group in Rio de Janeiro studied the conditions for phosphate sorption and desorption under conditions which may have been present in the primeval ocean. In particular, the question arises as to the enrichment of free, soluble inorganic phosphate (Pi), which was probably present in low concentrations similar to those of today (10 7-10 8M) (Miller and Keffe, 1995). Experiments show that acid conditions favour sorption at FeS2, while a weakly alkaline milieu works in an opposite manner. Sorption of Pi can be favoured by various factors, such as hydrophobic coating of pyrite with molecules such as acetate, which could have been formed in the vicinity of hydrothermal systems, or the neutralisation of mineral surface charges by Na+ and K+. [Pg.203]

An increase of the pH in the aqueous medium, and capture of SO42- by the mineral surface, could lead to the liberation of Pi. In addition, there seem to be selfregulation mechanisms for the Pi sorption-desorption process, depending on the S042 concentration at the interface. Processes such as enrichment and liberation... [Pg.203]


See other pages where Sorption minerals is mentioned: [Pg.333]    [Pg.333]    [Pg.47]    [Pg.220]    [Pg.220]    [Pg.194]    [Pg.199]    [Pg.10]    [Pg.287]    [Pg.12]    [Pg.209]    [Pg.208]    [Pg.646]    [Pg.50]    [Pg.335]    [Pg.340]    [Pg.344]    [Pg.344]    [Pg.354]    [Pg.359]    [Pg.468]    [Pg.538]    [Pg.539]    [Pg.542]    [Pg.553]    [Pg.569]    [Pg.570]    [Pg.407]    [Pg.31]    [Pg.133]    [Pg.140]    [Pg.143]    [Pg.164]    [Pg.169]    [Pg.294]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Clay minerals, sorption reactions

Mineral surfaces sorption

Recovery of Valuable Mineral Components from Seawater by Ion-Exchange and Sorption Methods

Soil minerals metal sorption

Sorption by mineral surfaces

Sorption on clay minerals

Sorption values, mineral surfaces

© 2024 chempedia.info