Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorption mineral surfaces

Volatilization. The susceptibility of a herbicide to loss through volatilization has received much attention, due in part to the realization that herbicides in the vapor phase may be transported large distances from the point of application. Volatilization losses can be as high as 80—90% of the total applied herbicide within several days of application. The processes that control the amount of herbicide volatilized are the evaporation of the herbicide from the solution or soHd phase into the air, and dispersal and dilution of the resulting vapor into the atmosphere (250). These processes are influenced by many factors including herbicide application rate, wind velocity, temperature, soil moisture content, and the compound s sorption to soil organic and mineral surfaces. Properties of the herbicide that influence volatility include vapor pressure, water solubility, and chemical stmcture (251). [Pg.48]

Figure 7. U(VI) sorption onto muscovite (7a, Schmeide et al. 2000) and hematite (7b, Lenhart and Honeyman 1999) in the absence (U) and in the presence of humic acid (U+HA). 7a [U02 ] = 1 pmol/L, [HA] = 5 mg/L, muscovite content of about 1.2g/L. Complexation of U with HA in solution and onto mineral surface may influence U sorption. For instance, U sorption onto muscovite is enhanced in presence of HA at low pH. 7b [U] = 1 jamol/L, [HA] = 10 mg/L. Hematite content in solution = 0.9 and 9g/L. Uptake of U increases with increasing hematite content. In presence of hematite, an increase of U sorption onto hematite is observed at low pH, especially at low hematite content. Figure 7. U(VI) sorption onto muscovite (7a, Schmeide et al. 2000) and hematite (7b, Lenhart and Honeyman 1999) in the absence (U) and in the presence of humic acid (U+HA). 7a [U02 ] = 1 pmol/L, [HA] = 5 mg/L, muscovite content of about 1.2g/L. Complexation of U with HA in solution and onto mineral surface may influence U sorption. For instance, U sorption onto muscovite is enhanced in presence of HA at low pH. 7b [U] = 1 jamol/L, [HA] = 10 mg/L. Hematite content in solution = 0.9 and 9g/L. Uptake of U increases with increasing hematite content. In presence of hematite, an increase of U sorption onto hematite is observed at low pH, especially at low hematite content.
Geckeis H, Klenze R, Kim J1 (1999) Solid-water interface reactions of actinides and homologues sorption onto mineral surfaces. Radiochim Acta 87 13-21... [Pg.571]

Pabalan RT, Turner DR, Bertetti FP, Prikryl JD (1998) Uranium(VI) sorption onto selected mineral surfaces. In Adsorption of Metals by Geomedia. Jenne EA (ed) Academic Press, San Francisco, p 99-130... [Pg.574]

Pyrite is not only one of the key compounds in Wachtershauser s theory, but could also have fulfilled an important function for phosphate chemistry in prebiotic syntheses. A group in Rio de Janeiro studied the conditions for phosphate sorption and desorption under conditions which may have been present in the primeval ocean. In particular, the question arises as to the enrichment of free, soluble inorganic phosphate (Pi), which was probably present in low concentrations similar to those of today (10 7-10 8M) (Miller and Keffe, 1995). Experiments show that acid conditions favour sorption at FeS2, while a weakly alkaline milieu works in an opposite manner. Sorption of Pi can be favoured by various factors, such as hydrophobic coating of pyrite with molecules such as acetate, which could have been formed in the vicinity of hydrothermal systems, or the neutralisation of mineral surface charges by Na+ and K+. [Pg.203]

An increase of the pH in the aqueous medium, and capture of SO42- by the mineral surface, could lead to the liberation of Pi. In addition, there seem to be selfregulation mechanisms for the Pi sorption-desorption process, depending on the S042 concentration at the interface. Processes such as enrichment and liberation... [Pg.203]

KoC is an important parameter which describes the potential for movement or mobility of pesticides in soil, sediment and groundwater. Because of the structural complexity of these agrochemical molecules, the above simple relationship which considers only the chemical s hydrophobicity may fail for polar and ionic compounds. The effects of pH, soil properties, mineral surfaces and other factors influencing sorption become important. Other quantities, KD (sorption partition coefficient to the whole soil on a dry weight basis) and KqM (organic matter-water partition coefficient) are also commonly used to describe the extent of sorption. K0M is often estimated as 0.56 KoC, implying that organic matter is 56% carbon. [Pg.4]

To be useful in modeling electrolyte sorption, a theory needs to describe hydrolysis and the mineral surface, account for electrical charge there, and provide for mass balance on the sorbing sites. In addition, an internally consistent and sufficiently broad database of sorption reactions should accompany the theory. Of the approaches available, a class known as surface complexation models (e.g., Adamson, 1976 Stumm, 1992) reflect such an ideal most closely. This class includes the double layer model (also known as the diffuse layer model) and the triple layer model (e.g., Westall and Hohl, 1980 Sverjensky, 1993). [Pg.155]

The reaction rate Rj in these equations is a catch-all for the many types of reactions by which a component can be added to or removed from solution in a geochemical model. It is the sum of the effects of equilibrium reactions, such as dissolution and precipitation of buffer minerals and the sorption and desorption of species on mineral surfaces, as well as the kinetics of mineral dissolution and precipitation reactions, redox reactions, and microbial activity. [Pg.302]

Some emphasis is given in the first two chapters to show that complex formation equilibria permit to predict quantitatively the extent of adsorption of H+, OH , of metal ions and ligands as a function of pH, solution variables and of surface characteristics. Although the surface chemistry of hydrous oxides is somewhat similar to that of reversible electrodes the charge development and sorption mechanism for oxides and other mineral surfaces are different. Charge development on hydrous oxides often results from coordinative interactions at the oxide surface. The surface coordinative model describes quantitatively how surface charge develops, and permits to incorporate the central features of the Electric Double Layer theory, above all the Gouy-Chapman diffuse double layer model. [Pg.7]

Adsorption on Inorganic Surfaces. McCarty et al. (55) and Karickhoff (1 ) proposed a two-phase model for sorption onto mineral surfaces and organic matter partitioning. This model hypothesizes that sorption to inorganic surfaces may occur simultaneously with the accepted partitioning into the organic matter. Assuming additivity of these two contributions, Kj can be estimated from... [Pg.204]

Figure 5. The influence of mineral surfaces on the sorption of organic solutes containing polar functional groups. Figure 5. The influence of mineral surfaces on the sorption of organic solutes containing polar functional groups.
Chemical reactions of adsorbed species are of importance in vast areas of science, the involvement of adsorbed metal ions in catalysis being one example of great economic value. In addition reactions involving adsorbed species can sometimes produce products that may be either difficult or impossible to prepare away from the mineral surface. Therefore, an understanding of the chemical processes that occur in such systems is of potential economic benefit to industrial operations. Such knowledge is also of much wider significance, however, because the movement of ions in most environmental situations is controlled by sorption processes, and aluminosilicate minerals play a major role in many situations. [Pg.357]

Sorption processes are influenced not just by the natures of the absorbate ion(s) and the mineral surface, but also by the solution pH and the concentrations of the various components in the solution. Even apparently simple absorption reactions may involve a series of chemical equilibria, especially in natural systems. Thus in only a comparatively small number of cases has an understanding been achieved of either the precise chemical form(s) of the adsorbed species or of the exact nature of the adsorption sites. The difficulties of such characterization arise from (i) the number of sites for adsorption on the mineral surface that are present because of the isomorphous substitutions and structural defects that commonly occur in aluminosilicate minerals, and (ii) the difference in the chemistry of solutions in contact with a solid surface as compound to bulk solution. Much of our present understanding is derived from experiments using spectroscopic techniques which are able to produce information at the molecular level. Although individual methods may often be applicable to only special situations, significant advances in our knowledge have been made... [Pg.357]

Rate data for hydrolysis reactions in homogeneous aqueous solutions have been reviewed (79), but application of these data to environmental conditions involving mineral surfaces remains difficult due to the unknown effects sorption may have. Several studies have demonstrated that acid-catalyzed reactions are promoted if the substrate is sorbed at clay surfaces (70-74 and other works reviewed by Theng, 8), but inhibition may also occur if substrate hydrolysis is base-promoted (74). [Pg.476]

The immobilization of dissolved chemical species by adsorption and ion exchange onto mineral surfaces is an important process affecting both natural and environmentally perturbed geochemical systems. However, sorption of even chemically simple alkali elements such as Cs and Sr onto common rocks often does not achieve equilibrium nor is experimentally reversible (l). Penetration or diffusion of sorbed species into the underlying matrix has been proposed as a concurrent non-equilibration process (2). However, matrix or solid state diffusion is most often considered extremely slow at ambient temperature based on extrapolated data from high tem-... [Pg.587]

Mass fluxes of alkali elements transported across the solid-solution interfaces were calculated from measured decreases in solution and from known surface areas and mineral-to-solution weight-to-volume ratios. Relative rates of Cs uptake by feldspar and obsidian in the batch experiments are illustrated in Figure 1. After initial uptake due to surface sorption, little additional Cs is removed from solution in contact with the feldspars. In contrast, parabolic uptake of Cs by obsidian continues throughout the reaction period indicating a lack of sorption equilibrium and the possibility of Cs penetration into the glass surface. [Pg.588]

Mineral surfaces have a much greater influence through sorption and precipitation of solutes and direct mediation of redox reactions. [Pg.107]

Mader, B.T., Uwe-Goss, K., and Eisenreich, S.J. Sorption of nonionic, hydrophobic organic chemicals to mineral surfaces. [Pg.1691]

Cadmium is found naturally deep in the subsurface in zinc, lead, and copper ores, in coal, shales, and other fossil fuels it also is released during volcanic activity. These deposits can serve as sources to ground and surface waters, especially when in contact with soft, acidic waters. Chloride, nitrate, and sulfate salts of cadmium are soluble, and sorption to soils is pH-dependent (increasing with alkalinity). Cadmium found in association with carbonate minerals, precipitated as stable solid compounds, or coprecipitated with hydrous iron oxides is less likely to be mobilized by resuspension of sediments or biological activity. Cadmium absorbed to mineral surfaces (e.g., clay) or organic materials is more easily bioaccumulated or released in a dissolved state when sediments are disturbed, such as during flooding. [Pg.63]

Kaiser K. G. Guggenberger (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geo-chem. 31 711-725... [Pg.594]


See other pages where Sorption mineral surfaces is mentioned: [Pg.412]    [Pg.12]    [Pg.108]    [Pg.412]    [Pg.12]    [Pg.108]    [Pg.220]    [Pg.287]    [Pg.209]    [Pg.335]    [Pg.340]    [Pg.538]    [Pg.133]    [Pg.294]    [Pg.14]    [Pg.87]    [Pg.270]    [Pg.214]    [Pg.363]    [Pg.7]    [Pg.7]    [Pg.8]    [Pg.192]    [Pg.206]    [Pg.211]    [Pg.343]    [Pg.347]    [Pg.125]    [Pg.169]    [Pg.332]   
See also in sourсe #XX -- [ Pg.204 , Pg.205 , Pg.206 , Pg.207 ]




SEARCH



Mineral surfaces

Sorption by mineral surfaces

Sorption minerals

Sorption values, mineral surfaces

© 2024 chempedia.info