Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent dissociation constant

The following physico-chemical properties of the analyte(s) are important in method development considerations vapor pressure, ultraviolet (UV) absorption spectrum, solubility in water and in solvents, dissociation constant(s), n-octanol/water partition coefficient, stability vs hydrolysis and possible thermal, photo- or chemical degradation. These valuable data enable the analytical chemist to develop the most promising analytical approach, drawing from the literature and from his or her experience with related analytical problems, as exemplified below. Gas chromatography (GC) methods, for example, require a measurable vapor pressure and a certain thermal stability as the analytes move as vaporized molecules within the mobile phase. On the other hand, compounds that have a high vapor pressure will require careful extract concentration by evaporation of volatile solvents. [Pg.53]

Very soluble in water practically insoluble in organic solvents. Dissociation Constant. pKa 3.5,12.5. [Pg.485]

Sparingly soluble in water soluble in ethanol and most organic solvents. Dissociation Constant. pKa9.5, 10.1 (20°). [Pg.959]

Experimental determinations of the conducting properties of electrolyte solutions are important essentially in two respects. Firstly, it is possible to study quantitatively the effects of interionic forces, degrees of dissociation and the extent of ion-pairing. Secondly, conductance values may be used to determine quantities such as solubilities of sparingly soluble salts, ionic products of self-ionizing solvents, dissociation constants of weak acids and to form the basis for conductimetric titration methods. [Pg.52]

Weak bases only partially accept protons from the solvent and are characterized by a base dissociation constant, kj,. For example, the base dissociation reaction and base dissociation constant for the acetate ion are... [Pg.141]

A sample contains a weak acid analyte, HA, and a weak acid interferent, HB. The acid dissociation constants and partition coefficients for the weak acids are as follows Ra.HA = 1.0 X 10 Ra HB = 1.0 X f0 , RpjHA D,HB 500. (a) Calculate the extraction efficiency for HA and HB when 50.0 mF of sampk buffered to a pH of 7.0, is extracted with 50.0 mF of the organic solvent, (b) Which phase is enriched in the analyte (c) What are the recoveries for the analyte and interferent in this phase (d) What is the separation factor (e) A quantitative analysis is conducted on the contents of the phase enriched in analyte. What is the expected relative erroi if the selectivity coefficient, Rha.hb> is 0.500 and the initial ratio ofHB/HA was lO.O ... [Pg.229]

The free maleic acid content in maleic anhydride is determined by direct potentiometric titration (166). The procedure involves the use of a tertiary amine, A/-ethylpipetidine [766-09-6J, as a titrant. A tertiary amine is chosen as a titrant since it is nonreactive with anhydrides (166,167). The titration is conducted in an anhydrous solvent system. Only one of the carboxyhc acid groups is titrated by this procedure. The second hydrogen s dissociation constant is too weak to titrate (166). This test method is not only used to determine the latent acid content in refined maleic acid, but also as a measure of the sample exposure to moisture during shipping. [Pg.459]

Physical properties of the acid and its anhydride are summarized in Table 1. Other references for more data on specific physical properties of succinic acid are as follows solubiUty in water at 278.15—338.15 K (12) water-enhanced solubiUty in organic solvents (13) dissociation constants in water—acetone (10 vol %) at 30—60°C (14), water—methanol mixtures (10—50 vol %) at 25°C (15,16), water—dioxane mixtures (10—50 vol %) at 25°C (15), and water—dioxane—methanol mixtures at 25°C (17) nucleation and crystal growth (18—20) calculation of the enthalpy of formation using semiempitical methods (21) enthalpy of solution (22,23) and enthalpy of dilution (23). For succinic anhydride, the enthalpies of combustion and sublimation have been reported (24). [Pg.534]

Both the carboxyl and the mercapto moieties of thioglycolic acid are acidic. Dissociation constants at 25°C are for pR, 3.6 pi, 10.5. ThioglycoHc acid is miscible ia water, ether, chloroform, dichloroethane and esters. It is weakly soluble ia aHphatic hydrocarbons such as heptane, hexane. Solvents such as alcohols and ketones can also react with thioglycolic acid. [Pg.1]

The acid dissociation constants (p/iT 2.7), equilibrium solubilities in several solvents (71JPS503) and lipophilicity properties (77JPS1675) for various penicillins have been summarized. [Pg.303]

The protonation equilibria for nine hydroxamic acids in solutions have been studied pH-potentiometrically via a modified Irving and Rossotti technique. The dissociation constants (p/fa values) of hydroxamic acids and the thermodynamic functions (AG°, AH°, AS°, and 5) for the successive and overall protonation processes of hydroxamic acids have been derived at different temperatures in water and in three different mixtures of water and dioxane (the mole fractions of dioxane were 0.083, 0.174, and 0.33). Titrations were also carried out in water ionic strengths of (0.15, 0.20, and 0.25) mol dm NaNOg, and the resulting dissociation constants are reported. A detailed thermodynamic analysis of the effects of organic solvent (dioxane), temperature, and ionic strength on the protonation processes of hydroxamic acids is presented and discussed to determine the factors which control these processes. [Pg.40]

In the discussion of the relative acidity of carboxylic acids in Chapter 1, the thermodynamic acidity, expressed as the acid dissociation constant, was taken as the measure of acidity. It is straightforward to determine dissociation constants of such adds in aqueous solution by measurement of the titration curve with a pH-sensitive electrode (pH meter). Determination of the acidity of carbon acids is more difficult. Because most are very weak acids, very strong bases are required to cause deprotonation. Water and alcohols are far more acidic than most hydrocarbons and are unsuitable solvents for generation of hydrocarbon anions. Any strong base will deprotonate the solvent rather than the hydrocarbon. For synthetic purposes, aprotic solvents such as ether, tetrahydrofuran (THF), and dimethoxyethane (DME) are used, but for equilibrium measurements solvents that promote dissociation of ion pairs and ion clusters are preferred. Weakly acidic solvents such as DMSO and cyclohexylamine are used in the preparation of strongly basic carbanions. The high polarity and cation-solvating ability of DMSO facilitate dissociation... [Pg.405]

An inflection point in a pH-rate profile suggests a change in the nature of the reaction caused by a change in the pH of the medium. The usual reason for this behavior is an acid-base equilibrium of a reactant. Here we consider the simplest such system, in which the substrate is a monobasic acid (or monoacidic base). It is pertinent to consider the mathematical nature of the acid-base equilibrium. Let HS represent a weak acid. (The charge type is irrelevant.) The acid dissociation constant, = [H ][S ]/[HS], is taken to be appropriate to the conditions (temperature, ionic strength, solvent) of the kinetic experiments. The fractions of solute in the conjugate acid and base forms are given by... [Pg.277]

The ionization eonstant should be a function of the intrinsic heterolytic ability (e.g., intrinsic acidity if the solute is an acid HX) and the ionizing power of the solvents, whereas the dissoeiation constant should be primarily determined by the dissociating power of the solvent. Therefore, Ad is expeeted to be under the eontrol of e, the dieleetrie eonstant. As a consequenee, ion pairs are not deteetable in high-e solvents like water, which is why the terms ionization constant and dissociation constant are often used interchangeably. In low-e solvents, however, dissociation constants are very small and ion pairs (and higher aggregates) become important species. For example, in ethylene chloride (e = 10.23), the dissociation constants of substituted phenyltrimethylammonium perchlorate salts are of the order 10 . Overall dissociation constants, expressed as pArx = — log Arx, for some substanees in aeetie acid (e = 6.19) are perchloric acid, 4.87 sulfuric acid, 7.24 sodium acetate, 6.68 sodium perchlorate, 5.48. Aeid-base equilibria in aeetie acid have been earefully studied beeause of the analytical importance of this solvent in titrimetry. [Pg.402]

Recently, Eq. (11) was extensively studied by Dewar and Grisdale, who synthesized several substituted 1 -naphthoic acids and determined the dissociation constants in mixed aqueous solvents in connection with a study on the mechanisms of transmission of the inductive effect. [Pg.336]

Furthermore, about 1920 the idea had become prevalent that many common crystals, such as rock salt, consisted of positive and negative ions in contact. It then became natural to suppose that, when this crystal dissolves in a liquid, the positive and negative ions go into solution separately. Previously it had been thought that, in each case when the crystal of an electrolyte dissolves in a solvent, neutral molecules first go into solution, and then a certain large fraction of the molecules are dissociated into ions. This equilibrium was expressed by means of a dissociation constant. Nowadays it is taken for granted that nearly all the common salts in aqueous solution are completely dissociated into ions. In those rare cases where a solute is not completely dissociated into ions, an equilibrium is sometimes expressed by means of an association constant that is to say, one may take as the starting point a completely dissociated electrolyte, and use this association constant to express the fact that a certain fraction of the ions are not free. This point of view leads directly to an emphasis on the existence of molecular ions in solution. When, for example, a solution contains Pb++ ions and Cl- ions, association would lead directly to the formation of molecular ions, with the equilibrium... [Pg.39]

Different Types of Proton Transfers. Molecular Ions. The Electrostatic Energy. The ZwiUertons of Amino Acids. Aviopro-tolysis of the Solvent. The Dissociation Constant of a Weak Acid. Variation of the Equilibrium Constant with Temperature. Proton Transfers of Class I. Proton Transfers of Classes II, III, and IV. The Temperature at Which In Kx Passes through Its Maximum. Comparison between Theory and Experiment. A Chart of Occupied and Vacant Proton Levels. [Pg.113]

If 0 lies below the freezing point of the solvent, the value of the dissociation constant will fall over the whole range of temperature. [Pg.156]

In recent years various attempts have been made to account for the observed differences between the dissociation constants of organic acids, whose molecules differ only slightly from each other. The proposed explanations have naturally been given in each case in terms of the structures of the respective neutral acid molecules.1 In the tentative discussion of HN03 and HI03 that has just been given, the approach has been quite different we focused attention, not on the neutral molecule or on the structure of the anion, but on the condition of the solvent in the vicinity of the anion. [Pg.200]

The mobile phase is interesting in that the water is buffered appropriately to complement the dissociation constants of the solutes. A mixture of methanol and acetonitrile is employed, the acetonitrile being used to increase the dispersive interactions in the mobile phase. The reason for the particular solvent mixture is not clear and it would appear that the separation might be achieved equally well by using a stronger solution of methanol alone or a more dilute solution acetonitrile alone. There is no particular advantage to one solvent mixture over another except for the fact that waste acetonitrile produces greater solvent disposal problems than methanol. [Pg.302]

Readily soluble in organic solvents ethanol 51, acetone 77,toluene 63, n-octanol 13, n-hexane 0.53 g per 100 mL Colorless to white solidified melt, no dissociation constant in an accessible pH range, octanol/water partition coefficient (log /Cow) 4.07 at 25 °C. [Pg.1294]

Usually there is a small amount of water in the solvent where it behaves as a base also, so that according to eqn. 4.61 we may write for its overall dissociation constant... [Pg.277]

Yasuda, M., Dissociation constants of some carboxylic acids in mixed aqueous solvents, Bull. Chem. Soc. Jpn. 32, 429 132 (1959). [Pg.260]

Woolley, E. M. Hepler, L. G., Apparent ionization constants of water in aqueous organic mixtures and acid dissociation constants of protonated co-solvents in aqueous solution, Anal. Chem. 44, 1520-1523 (1972). [Pg.261]


See other pages where Solvent dissociation constant is mentioned: [Pg.86]    [Pg.222]    [Pg.296]    [Pg.296]    [Pg.300]    [Pg.769]    [Pg.770]    [Pg.307]    [Pg.6]    [Pg.360]    [Pg.89]    [Pg.64]    [Pg.155]    [Pg.68]    [Pg.119]    [Pg.381]    [Pg.81]    [Pg.64]    [Pg.103]    [Pg.682]    [Pg.694]    [Pg.154]    [Pg.21]   
See also in sourсe #XX -- [ Pg.295 ]




SEARCH



Dissociating solvents

Dissociation dissociating solvents

Solvent constants

Solvent dissociation

© 2024 chempedia.info