Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvation thermodynamic properties

Fleischman S H and C L Brooks III 1987. Thermodynamics of Aqueous Solvation - Solution Properties of. Mcohols and Alkanes. Journal of Chemical Physics 87 3029-3037. [Pg.650]

Kamlet-Taft Linear Solvation Energy Relationships. Most recent works on LSERs are based on a powerfiil predictive model, known as the Kamlet-Taft model (257), which has provided a framework for numerous studies into specific molecular thermodynamic properties of solvent—solute systems. This model is based on an equation having three conceptually expHcit terms (258). [Pg.254]

The nonnuclear chemistry of Fr reduces to studies of coprecipitation in which Fr shows the behavior of the heavier alkali metal. Coprecipitation is followed by ion exchange to concentrate Fr Physical (mp, density, crystal parameters) and chemical (thermodynamics, solvation entropies) properties are theoretically derived or extrapolated from the trends exhibited by the other alkali metals. [Pg.355]

The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper we review recent work in our laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper we review a more analytical approach we have developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations. [Pg.82]

Considerable progress has been made in the last decade in the development of more analytical methods for studying the structural and thermodynamic properties of liquids. One particularly successful theoretical approach is. based on an Ornstein-Zernike type integral equation for determining the solvent structure of polar liquids as well as the solvation of solutes.Although the theory provides a powerful tool for elucidating the structure of liquids in... [Pg.100]

At present, intercalation compounds are used widely in various electrochemical devices (batteries, fuel cells, electrochromic devices, etc.). At the same time, many fundamental problems in this field do not yet have an explanation (e.g., the influence of ion solvation, the influence of defects in the host structure and/or in the host stoichiometry on the kinetic and thermodynamic properties of intercalation compounds). Optimization of the host stoichiometry of high-voltage intercalation compounds into oxide host materials is of prime importance for their practical application. Intercalation processes into organic polymer host materials are discussed in Chapter 26. [Pg.448]

Fleischman, S. H. Brooks III, C. L., Thermodynamics of aqueous solvation Solution properties of alchohols and alkanes, J. Chem. Phys. 1987, 87, 3029-3037... [Pg.27]

A large number of compounds of pharmaceutical interest are capable of being crystallized in either more than one crystal lattice structure (polymorphs), with solvent molecules included in the crystal lattice (solvates), or in crystal lattices that combine the two characteristics (polymorphic solvates) [122,123]. A wide variety of structural explanations can account for the range of observed phenomena, as has been discussed in detail [124,125]. The pharmaceutical implications of polymorphism and solvate formation have been recognized for some time, with solubility, melting point, density, hardness, crystal shape, optical and electrical properties, vapor pressure, and virtually all the thermodynamic properties being known to vary with the differences in physical form [126]. [Pg.363]

Before considering different theoretical approaches to determining the free energies and other thermodynamic properties of ionic solvation, it is important to be aware of a problem on the experimental level. There are several methods available for obtaining these quantities for electrolyte solutions, both aqueous and nonaqueous some of these have been described by Conway and Bockris162 and by Padova.163 For example, enthalpies of solvation can be found via thermodynamic cycles, free energies from solubilities or galvanic cell potentials. However the results... [Pg.59]

It was also observed, in 1973, that the fast reduction of Cu ions by solvated electrons in liquid ammonia did not yield the metal and that, instead, molecular hydrogen was evolved [11]. These results were explained by assigning to the quasi-atomic state of the nascent metal, specific thermodynamical properties distinct from those of the bulk metal, which is stable under the same conditions. This concept implied that, as soon as formed, atoms and small clusters of a metal, even a noble metal, may exhibit much stronger reducing properties than the bulk metal, and may be spontaneously corroded by the solvent with simultaneous hydrogen evolution. It also implied that for a given metal the thermodynamics depended on the particle nuclearity (number of atoms reduced per particle), and it therefore provided a rationalized interpretation of other previous data [7,9,10]. Furthermore, experiments on the photoionization of silver atoms in solution demonstrated that their ionization potential was much lower than that of the bulk metal [12]. Moreover, it was shown that the redox potential of isolated silver atoms in water must... [Pg.579]

Examination of ionic liquid solvation interactions and thermodynamic properties using gas-liquid chromatography... [Pg.141]

The study of ILs in GLC has yielded important information regarding solute-solvent interactions providing valuable insights into their complex solvation interactions and thermodynamic properties for mixed solvent systems. Moreover, ILs have proven to be an important new class of stationary phases for the separation of a wide variety of different analytes. IL stationary phases will soon be commercially available which will inevitably promote further improvements in separation selectivity, thermal stability, immobilization bonding chemistry/stationary phase stability, and will broaden the range of separated compounds. IL-based stationary phases also hold great promise in GC mass spectrometry where the dual-nature selectivity of the stationary phase eliminates the need for frequent changing of columns. [Pg.160]

Statistical thermodynamics gives us the recipes to perform this average. The most appropriate Gibbsian ensemble for our problem is the canonical one (namely the isochoric-isothermal ensemble N,V,T). We remark, in passing, that other ensembles such as the grand canonical one have to be selected for other solvation problems). To determine the partition function necessary to compute the thermodynamic properties of the system, and in particular the solvation energy of M which we are now interested in, of a computer simulation is necessary [1],... [Pg.2]

The interest in hydrophobic interactions was stimulated by their unusual thermodynamic properties it was argued and believed that they are governed, not by enthalpic, but by entropic features, characterized by the undesirable entropy decrease of water in the vicinity of nonpolar groups (Frank and Evans, 1945 Kauzmann, 1959 Franks, 1975 Tanford, 1980). This conclusion was reached largely from consideration of solvation effects at room temperature. [Pg.193]

It must be pointed out that the new ionic radii have been used previously to estimate thermodynamic properties of ionic solvation. [Pg.79]

HP he study of the behavior of electrolytes in mixed solvents is currently arousing considerable interest because of its practical and fundamental implications (1). Among the simpler binary solvent mixtures, those where water is one component are obviously of primary importance. We have recently compared the effects of small quantities of water on the thermodynamic properties of selected 1 1 electrolytes in sulfolane, acetonitrile, propylene carbonate, and dimethylsulfoxide (DMSO). These four compounds belong to the dipolar aprotic (DPA) class of solvents that has received a great deal of attention (2) because of their wide use as media for physical separations and chemical and electrochemical reactions. We interpreted our vapor pressure, calorimetry, and NMR results in terms of preferential solvation of small cations and anions by water and obtained... [Pg.150]

From the foregoing considerations it is apparent that thermodynamic properties of compounds such as ionization constants or solubilities do not only depend on heterolytic dissociation energies but may be strongly influenced by free energies of solvation or free-energy contributions associated with changes in the state of aggregation. [Pg.214]

Thermodynamic Methods. Since many thermodynamic properties depend upon the crystal field stabilization energy (e.g., lattice energy, solvation energy, electrode potentials, etc.), Dq may in principle be estimated by thermodynamic rather than spectroscopic means. The agree-... [Pg.438]


See other pages where Solvation thermodynamic properties is mentioned: [Pg.474]    [Pg.476]    [Pg.214]    [Pg.1030]    [Pg.12]    [Pg.329]    [Pg.341]    [Pg.555]    [Pg.45]    [Pg.405]    [Pg.429]    [Pg.39]    [Pg.524]    [Pg.31]    [Pg.139]    [Pg.107]    [Pg.2]    [Pg.317]    [Pg.688]    [Pg.360]    [Pg.46]    [Pg.512]    [Pg.150]    [Pg.196]    [Pg.85]    [Pg.23]    [Pg.30]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Solvation properties

Solvation thermodynamics

© 2024 chempedia.info