Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution reduction potential

Figure 3. Regression line of the solution reduction potential versus the hmo-lumo energy (eLUM0, / negative) for a series of benzenoid hydrocarbons (Streitwieser Schwager 1962 Streitwieser 1962). The half-wave potentials for azulene (1), acepleiadylene (2), pyracyclene (3), and C60 are also shown (see text). Figure 3. Regression line of the solution reduction potential versus the hmo-lumo energy (eLUM0, / negative) for a series of benzenoid hydrocarbons (Streitwieser Schwager 1962 Streitwieser 1962). The half-wave potentials for azulene (1), acepleiadylene (2), pyracyclene (3), and C60 are also shown (see text).
Not many reduction potentials are known for copper complexes. That of the Cu2+/Cu+ couple is 0.16 V Since lo(Cu+/Cu°) is 0.52 V, the disproportionation of Cu+ to Cu° and Cu2+ is favourable. This reaction does indeed occur, which makes is impossible to study stable copper(I) solutions. Reduction potentials of copper(II)-/copper(I)-(l,10-phenanthroline)2 and a few derivatives have been calculated from a kinetic analysis of appropriate rate constants values range from 108 mV for the 5-methyl-l, 10-phenanthroline complex to 219 mV for the complex with a nitro group at the 5 position [52], Values of 0.17 V and 0.12 V are given by Phillips and Williams [53] for the phenanthroline and bipyridine complexes, respectively. Such complexes can thermodynamically catalyse both the superoxide dismutation and the one-electron reduction of hydrogen peroxide (see below). [Pg.9]

The UV-visible absorption spectrum of Ru(2,2 -bipyridine)3 maximum at about 450 nm, from which the energy in volts for process XI-39 may be estimated. The standard reduction potential for the R" /R couple is about 1.26 V at 25°C. Estimate from this information (and standard reduction potentials) the potential in volts for processes XI-40 and XI-41. Repeat the calculation for alkaline solutions. [Pg.422]

One aspect that reflects the electronic configuration of fullerenes relates to the electrochemically induced reduction and oxidation processes in solution. In good agreement with the tlireefold degenerate LUMO, the redox chemistry of [60]fullerene, investigated primarily with cyclic voltammetry and Osteryoung square wave voltammetry, unravels six reversible, one-electron reduction steps with potentials that are equally separated from each other. The separation between any two successive reduction steps is -450 50 mV. The low reduction potential (only -0.44 V versus SCE) of the process, that corresponds to the generation of the rt-radical anion 131,109,110,111 and 1121, deserves special attention. [Pg.2418]

Consequently, solutions of Fe + and Fe + are buffered to a potential near the standard-state reduction potential for Fe +. [Pg.170]

The reduction potentials for the actinide elements ate shown in Figure 5 (12—14,17,20). These ate formal potentials, defined as the measured potentials corrected to unit concentration of the substances entering into the reactions they ate based on the hydrogen-ion-hydrogen couple taken as zero volts no corrections ate made for activity coefficients. The measured potentials were estabhshed by cell, equihbrium, and heat of reaction determinations. The potentials for acid solution were generally measured in 1 Af perchloric acid and for alkaline solution in 1 Af sodium hydroxide. Estimated values ate given in parentheses. [Pg.218]

Fig. 5a. Standard (or formal) reduction potentials of actinium and the actinide ions in acidic (pH 0) and basic (pH 14) aqueous solutions (values are in volts... Fig. 5a. Standard (or formal) reduction potentials of actinium and the actinide ions in acidic (pH 0) and basic (pH 14) aqueous solutions (values are in volts...
Ozone can be analyzed by titrimetry, direct and colorimetric spectrometry, amperometry, oxidation—reduction potential (ORP), chemiluminescence, calorimetry, thermal conductivity, and isothermal pressure change on decomposition. The last three methods ate not frequently employed. Proper measurement of ozone in water requites an awareness of its reactivity, instabiUty, volatility, and the potential effect of interfering substances. To eliminate interferences, ozone sometimes is sparged out of solution by using an inert gas for analysis in the gas phase or on reabsorption in a clean solution. Historically, the most common analytical procedure has been the iodometric method in which gaseous ozone is absorbed by aqueous KI. [Pg.503]

The peroxodisulfate ion in aqueous solution is one of the strongest oxidising agents known. The standard oxidation—reduction potential for the following reaction is 2.08 V (77,78). [Pg.96]

The chemistry of plutonium ions in solution has been thoroughly studied and reviewed (30,94—97). Thermodynamic properties of aqueous ions of Pu are given in Table 8 and in the Uterature (64—66). The formal reduction potentials in aqueous solutions of 1 Af HCIO or KOH at 25°C maybe summarized as follows (66,86,98—100) ... [Pg.198]

Other Coordination Complexes. Because carbonate and bicarbonate are commonly found under environmental conditions in water, and because carbonate complexes Pu readily in most oxidation states, Pu carbonato complexes have been studied extensively. The reduction potentials vs the standard hydrogen electrode of Pu(VI)/(V) shifts from 0.916 to 0.33 V and the Pu(IV)/(III) potential shifts from 1.48 to -0.50 V in 1 Tf carbonate. These shifts indicate strong carbonate complexation. Electrochemistry, reaction kinetics, and spectroscopy of plutonium carbonates in solution have been reviewed (113). The solubiUty of Pu(IV) in aqueous carbonate solutions has been measured, and the stabiUty constants of hydroxycarbonato complexes have been calculated (Fig. 6b) (90). [Pg.200]

Carbon dioxide generated by the fermentation process must be removed to help maintain the pH of the solution at pH 7.6—8.0. Carbon dioxide also inhibits the activity of the bacteria. The oxidation reduction potential is kept at 100—200 mV. The ideal temperature in the reactor varies with different strains in the bacteria but generally is 25—35°C. [Pg.120]

The most significant chemical property of zinc is its high reduction potential. Zinc, which is above iron in the electromotive series, displaces iron ions from solution and prevents dissolution of the iron. For this reason, zinc is used extensively in coating steel, eg, by galvanizing and in zinc dust paints, and as a sacrificial anode in protecting pipelines, ship hulls, etc. [Pg.398]

Reactions in Water. The ionization potential for bromine is 11.8 eV and the electron affinity is 3.78 eV. The heat of dissociation of the Br2 molecule is 192 kj (46 kcal). The reduction potentials for bromine and oxybromide anions in aqueous acid solutions at 25°C are (21) ... [Pg.281]

The standard reduction potential of Cr " (Table 2) shows that this ion is a strong reducing agent, and Cr(II) compounds have been used as reagents in analytical chemistry procedures (26). The reduction potential also explains why Cr(II) compounds are unstable in aqueous solutions. In the presence of air, the oxidation to Cr(III) occurs by reaction with oxygen. However, Cr(II) also reacts with water in deoxygenated solutions, depending on acidity and the anion present, to produce H2 and Cr(III) (27,28). [Pg.134]

In this work, a method based on the reduction potential of ascorbic acid was developed for the sensitive detennination of trace of this compound. In this method ascorbic acid was added on the Cr(VI) solution to reduced that to Cr(III). Cr(III) produced in solution was quantitatively separated from the remainder of Cr(VI). The conditions were optimized for efficient extraction of Cr(III). The extracted Cr(III) was finally mineralized with nitric acid and sensitively analyzed by electro-thermal atomic absorption spectrometry. The determinations were carried out on a Varian AA-220 atomic absolution equipped with a GTA-110 graphite atomizer. The results obtained by this method were compared with those obtained by the other reported methods and it was cleared that the proposed method is more precise and able to determine the trace of ascorbic acid. Table shows the results obtained from the determination of ascorbic acid in two real samples by the proposed method and the spectrometric method based on reduction of Fe(III). [Pg.154]

Standard, reduction potentials are determined by measuring the voltages generated in reaction half-cells (Figure 21.2). A half-cell consists of a solution containing 1 M concentrations of both the oxidized and reduced forms of the substance whose reduction potential is being measured, and a simple electrode. [Pg.675]

Table 5.1 lists some of the atomic properties of the Group 2 elements. Comparison with the data for Group 1 elements (p. 75) shows the substantial increase in the ionization energies this is related to their smaller size and higher nuclear charge, and is particularly notable for Be. Indeed, the ionic radius of Be is purely a notional figure since no compounds are known in which uncoordinated Be has a 2- - charge. In aqueous solutions the reduction potential of... [Pg.111]

TII3 is an intriguing compound which is isomorphous with NH4I3 and Csly (p. 836) it therefore contains the linear I3 ion and is a compound of Tl rather than Tl . It is obtained as black crystals by evaporating an equimolar solution of Til and I2 in concentrated aqueous HI. The formulation Tl (l3 ) rather than Tl (I )y is consistent with the standard reduction potentials °(T1"VT1 )1.26 V and °(il2/I )-(-0.54 V,... [Pg.239]

Consistent with this, even KI3 is rapidly decolorized in alkaline solution. The example is a salu-tory reminder of the influence of pH, solubility, and complex formation on the standard reduction potentials of many elements. [Pg.240]

Reduction of fullerenes to fullerides — Reversible electrochemical reduction of Ceo in anhydrous dimethylformamide/toluene mixtures at low temperatures leads to the air-sensitive coloured anions Qo" , ( = 1-6). The successive mid-point reduction potentials, 1/2, at -60°C are -0.82, -1.26, -1.82, -2.33, —2.89 and —3.34 V, respectively. Liquid NH3 solutions can also be used. " Ceo is thus a very strong oxidizing agent, its first reduction potential being at least 1 V more positive than those of polycyclic aromatic hydrocarbons. C70 can also be reversibly reduced and various ions up to... [Pg.285]

Table 11.4 Standard reduction potentials for nitrogen species in acidic aqueous solution (pH 0, 25°C)... Table 11.4 Standard reduction potentials for nitrogen species in acidic aqueous solution (pH 0, 25°C)...
Figure 11.8 Oxidation states of nitrogen showing standard reduction potentials in volts (a) in acid solution at pH 0, and (b) in basic solution at pH 14. Figure 11.8 Oxidation states of nitrogen showing standard reduction potentials in volts (a) in acid solution at pH 0, and (b) in basic solution at pH 14.

See other pages where Solution reduction potential is mentioned: [Pg.260]    [Pg.56]    [Pg.135]    [Pg.136]    [Pg.135]    [Pg.136]    [Pg.1781]    [Pg.438]    [Pg.260]    [Pg.56]    [Pg.135]    [Pg.136]    [Pg.135]    [Pg.136]    [Pg.1781]    [Pg.438]    [Pg.219]    [Pg.951]    [Pg.508]    [Pg.440]    [Pg.440]    [Pg.20]    [Pg.198]    [Pg.35]    [Pg.469]    [Pg.472]    [Pg.485]    [Pg.470]    [Pg.102]    [Pg.1]    [Pg.29]    [Pg.430]    [Pg.434]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Oxidation-reduction potentials acid solutions

Oxidation-reduction potentials basic solutions

Reduction Potentials Involving Inorganic Free Radicals in Aqueous Solution

Reduction solutions

Solution potentials

Standard Electrode (Reduction) Potentials in Aqueous Solution at

Standard Reduction Potentials in Aqueous Solution at

Standard reduction potentials in aqueous solutions

© 2024 chempedia.info