Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution Manufacturing Processes

Manufacturing processes have been improved by use of on-line computer control and statistical process control leading to more uniform final products. Production methods now include inverse (water-in-oil) suspension polymerization, inverse emulsion polymerization, and continuous aqueous solution polymerization on moving belts. Conventional azo, peroxy, redox, and gamma-ray initiators are used in batch and continuous processes. Recent patents describe processes for preparing transparent and stable microlatexes by inverse microemulsion polymerization. New methods have also been described for reducing residual acrylamide monomer in finished products. [Pg.139]

Demand for Caustic Soda Types. Approximately 99% of the sodium hydroxide produced in 1987 was 50% caustic solution (5). Higher concentrations require additional evaporation and therefore increased prices relative to the sodium oxide values. To obtain maximum value, users have learned to adapt manufacturing processes to the 50% caustic soda. [Pg.518]

In one manufacturing process, aluminum chloride is treated with a solution containing sodium carbonate and sodium bicarbonate. The product of this reaction is mixed with the precipitate obtained by reaction of a solution of aluminum chloride and ammonia. The mixed magma is dialyzed, the product mixed with glycerol (qv), sodium benzoate is added, and the mixture is then passed through a coUoid mill. [Pg.199]

Other than fuel, the largest volume appHcation for hexane is in extraction of oil from seeds, eg, soybeans, cottonseed, safflower seed, peanuts, rapeseed, etc. Hexane has been found ideal for these appHcations because of its high solvency for oil, low boiling point, and low cost. Its narrow boiling range minimises losses, and its low benzene content minimises toxicity. These same properties also make hexane a desirable solvent and reaction medium in the manufacture of polyolefins, synthetic mbbers, and some pharmaceuticals. The solvent serves as catalyst carrier and, in some systems, assists in molecular weight regulation by precipitation of the polymer as it reaches a certain molecular size. However, most solution polymerization processes are fairly old it is likely that those processes will be replaced by more efficient nonsolvent processes in time. [Pg.406]

A generic manufacturing process for PAG involves the addition of base to aluminum chloride solution... [Pg.179]

A flow diagram for the manufacturing process is shown in Figure 8. First, ether solution containing 7-dehydrocholesterol is recirculated through a quartz uv reactor, and the ether is distilled off. Methanol is added to the 7-dehydrocholesterol—vitarnin mixture, and the remaining ether is... [Pg.134]

G in the presence of a catalytic amount of a Lewis base such as dimethylether, (GH2)20. In addition to the gas-phase pyrolysis of diborane, can be prepared by a solution-phase process developed at Union Garbide Gorp. Decaborane is a key intermediate in the preparation of many carboranes and metaHa derivatives. As of this writing, this important compound is not manufactured on a large scale in the western world and is in short supply. Prices for decaborane in 1991 were up to 10,000/kg. [Pg.235]

There are four principal steps in bromine production (/) oxidation of bromide to bromine (2) stripping bromine from the aqueous solution (3) separation of bromine from the vapor and (4) purification of the bromine. Most of the differences between the various bromine manufacturing processes are in the stripping step. [Pg.285]

Modem manufacturing processes quench the roast by continuous discharge into the leach water held in tanks equipped with agitators. At this point the pH of the leach solution is adjusted to between 8 and 9 to precipitate aluminum and siHcon. The modem leaching operations are very rapid because no or htde lime is used. After separation of the ore residue and precipitated impurities using rotary vacuum filters, the cmde Hquid sodium chromate may need to be treated to remove vanadium, if present, in a separate operation. The ore residue and precipitants are either recycled or treated to reduce hexavalent chromium to Cr(III) before disposal. [Pg.138]

Manufacturing Processing and Uses. In commercial production, aqueous urea solution is mixed with acetaldehyde in 1 1 molar ratios. An acid catalyst is introduced into the reaction mixture which is staged at various process temperatures. After neutralization with a base, the CDU is separated from the mother hquor by filtration or spray drying. [Pg.133]

AGE-Gontaining Elastomers. The manufacturing process for ECH—AGE, ECH—EO—AGE, ECH—PO—AGE, and PO—AGE is similar to that described for the ECH and ECH—EO elastomers. Solution polymerization is carried out in aromatic solvents. Slurry systems have been reported for PO—AGE (39,40). When monomer reactivity ratios are compared, AGE (and PO) are approximately 1.5 times more reactive than ECH. Since ECH is slightly less reactive than PO and AGE and considerably less reactive than EO, background monomer concentration must be controlled in ECH—AGE, ECH—EO—AGE, and ECH—PO—AGE synthesis in order to obtain a uniform product of the desired monomer composition. This is not necessary for the PO—AGE elastomer, as a copolymer of the same composition as the monomer charge is produced. AGE content of all these polymers is fairly low, less than 10%. Methods of molecular weight control, antioxidant addition, and product work-up are similar to those used for the ECH polymers described. [Pg.555]

The term manufacture also includes coincidental production of a toxic chemical (e.g., as a byproduct or impurity) as a result of the manufacture, processing, use, or treatment of other chemical substances. In the case of coincidental production of an impurity (i.e., a chemical that remains in the product that is distributed in commerce), the de minimis limitation, discussed on page 11, applies. The de minimis limitation does not apply to byproducts (e.g., a chemical that is separated from a process stream and further processed or disposed). Certain listed toxic chemicals may be manufactured as a result of wastewater treatment or other treatment processes. For example, neutralization of acid wastewater can result in the coincidental manufacture of ammonium nitrate (solution). [Pg.25]

Solutions. Two substances on the list, ammonium nitrate and ammonium sulfate, are qualified by the term solution," which refers to the physical state of these chemicals. Solid, molten, and pelletized forms of these chemicals are exempt from threshold and release determinations. Only facilities that manufacture, process, or otherwise use these chemicals in the form of a solution are required to report. Supplier notification applies only if the chemical is distributed as a solution. [Pg.27]

The nickel-cadmium battery was invented by Jungner in 1899. The battery used nickel hydroxide for the positive electrode, cadmium hydroxide for the negative electrode, and an alkaline solution for the electrolyte. Jungner s nickel-cadmium battery has undergone various forms of the development using improved materials and manufacturing processes to achieve a superior level of performance. [Pg.23]

Lead oxide (PbO) (also called litharge) is formed when the lead surface is exposed to oxygen. Furthermore, it is important as a primary product in the manufacturing process of the active material for the positive and negative electrodes. It is not stable in acidic solution but it is formed as an intermediate layer between lead and lead dioxide at the surface of the corroding grid in the positive electrode. It is also observed underneath lead sulfate layers at the surface of the positive active material. [Pg.153]

The ICl-CaC03 procedure required a filtration to remove insoluble, inorganic by-products prior to biphasic extraction. In an effort to develop a homogeneous process for the iodination step, a pH control protocol was later implemented in the manufacturing process. The pH-controlled iodination was run in a single phase in a MeOH-water system by simultaneous addition of the aqueous IC1 solution and 1M NaOH. Citric acid was added to increase the buffer capacity to the optimal pH (5-5.5) for robust operation. Under these conditions, the iodoaniline 28 was typically obtained in >99 A% with <1% of diiodoaniline 32. Residual... [Pg.123]


See other pages where Solution Manufacturing Processes is mentioned: [Pg.135]    [Pg.287]    [Pg.383]    [Pg.135]    [Pg.287]    [Pg.383]    [Pg.163]    [Pg.10]    [Pg.221]    [Pg.208]    [Pg.65]    [Pg.67]    [Pg.449]    [Pg.241]    [Pg.316]    [Pg.171]    [Pg.491]    [Pg.519]    [Pg.14]    [Pg.400]    [Pg.12]    [Pg.272]    [Pg.183]    [Pg.449]    [Pg.133]    [Pg.528]    [Pg.133]    [Pg.434]    [Pg.142]    [Pg.239]    [Pg.27]    [Pg.516]    [Pg.131]    [Pg.47]    [Pg.293]   


SEARCH



Manufacturing Solutions

Solute process

Solution processability

Solution processes

Solution processing

Solutizer process

© 2024 chempedia.info