Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution effect spikes

Another example for the HMRRD electrode is given in Fig. 9 for Fe in alkaline solutions [12, 27]. The square wave modulation of the rotation frequency co causes the simultaneous oscillation of the analytical ring currents. They are caused by species of the bulk solution. Additional spikes refer to corrosion products dissolved at the Fe disc. This is a consequence of the change of the Nemst diffusion layer due to the changes of co. This pumping effect leads to transient analytical ring currents. Besides qualitative information, also quantitative information on soluble corrosion products may be obtained. The size of the spikes is proportional to the dissolution rate at the disc, as has been shown by a close relation of experimental results and calculations [28-30]. As seen in Fig. 7, soluble Fe(II) species are formed in the po-... [Pg.288]

The adjustment of the samples, which is done while the slurry is stirred with a magnetic stirrer, seems to have some cascade effect on arsenic release. Before the adjustment is done, meaning at lower pH and higher Eh, less arsenic is in solution. After increasing the pH to pH=8, arsenic is released into solution. This spike in arsenic concentration in the filtrate is drastically reduced after only two days with further decrease the longer the interval between sampling. [Pg.374]

This mode of calibration provides an effective way to minimize sample-specific matrix effects by spiking samples with known concentrations of analytes. - In standard addition calibration, the intensity of a blank solution is first measured. Next, the sample solution is spiked with known concentrations of each element to be determined. The instrument measures the response for the spiked samples and creates a calibration curve for each element for which a spike has been added. The calibration curve is a plot of the blank subtracted intensity of each spiked element against its concentration value. After creating the calibration curve, the unspiked sample solutions are then analyzed and compared to the calibration curve. Based on the slope of the calibration curve and where it intercepts the x-axis, the instrument software determines the unspiked concentration of the analytes in the unknown samples. This can be seen in Figure 13.2, which shows a calibration of the sample intensity and the... [Pg.117]

Figure 5.61 Quantitative results for four diarrhetic shellfish poisons obtained when identical amounts of analyte were spiked into three different poison-free scallop extract solutions. Reprinted from J. Chromatogr., A, 943, Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins , Ito, S. and Tsukada, K., 39-46, Copyright (2002), with permission from Elsevier Science. Figure 5.61 Quantitative results for four diarrhetic shellfish poisons obtained when identical amounts of analyte were spiked into three different poison-free scallop extract solutions. Reprinted from J. Chromatogr., A, 943, Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins , Ito, S. and Tsukada, K., 39-46, Copyright (2002), with permission from Elsevier Science.
The first term measures the difference between the data and the fit, KF. The second term is a Tikhonov regularization and its amplitude is controlled by the parameter a. The effect of this regularization term is to select a solution with a small 2-norm 11 F 2 and as a result a solution that is smooth and without sharp spikes. However, it may cause a bias to the result. When a is chosen such that the two terms are comparable, the bias is minimized and the result is stable in the presence of noise. When a is much smaller, the resulting spectrum F can become unstable. [Pg.170]

Matrix effect is a phrase normally used to describe the effect of some portion of a sample matrix that causes erroneous assay results if care is not taken to avoid the problem or correct for it by some mechanism. The most common matrix effects are those that result in ion suppression and subsequent false negative results. Ion enhancement may lead to false positive results.126 127 Several reports about matrix effects include suggestions on what can cause them and how to avoid them.126-147 While various ways to detect matrix effects have been reported, Matuszewski et al.140 described a clear way to measure the matrix effect (ME) for an analyte, recovery (RE) from the extraction procedure, and overall process efficiency (PE) of a procedure. Their method is to prepare three sets of samples and assay them using the planned HPLC/MS/MS method. The first set is the neat solution standards diluted into the mobile phase before injection to obtain the A results. The second set is the analyte spiked into the blank plasma extract (after extraction) to obtain the B results. The third set is the analyte spiked into the blank plasma before the extraction step (C results) these samples are extracted and assayed along with the two other sets. The three data sets allow for the following calculations ... [Pg.220]

During a single run, which may take all day if a large number of samples are to be analyzed, the instrument may drift from its optimum settings. To detect this drift in solution-based techniques, and also to compensate for some matrix effects, a known amount of an element may be added to each sample before analysis. This internal standard (also called a spike) is added to all the samples and blanks, with the exception of the instrument blank (which is defined as zero concentration for all elements see below). It is important that the element (or isotope) chosen as the spike is not an element which is to be determined in the samples, and preferably which does not occur naturally in the samples. It must not be an element which will cause, or suffer from, interference with the other elements to be determined. In solution ICP-MS,... [Pg.308]

If the sample matrix is complex, it may be necessary to determine if there are any interference effects from the matrix, on the analyte response. This is usually done by spiking the sample with a known amount of analyte. Two equal portions of sample are taken and an appropriate quantity of analyte is added to one to effectively double the absorbance. A similar quantity of analyte is added to water to make a spike-alone solution. Readings are taken for sample, sample-plus-spike and spike-alone solutions and the amount of interference calculated as a percentage enhancement or... [Pg.446]

Using the three measured ratios, Ca/ Ca, Ca/ " Ca and Ca/ " Ca, three unknowns can be solved for the tracer/sample ratio, the mass discrimination, and the sample Ca/ Ca ratio (see also Johnson and Beard 1999 Heuser et al. 2002). Solution of the equations is done iteratively. It is assumed that the isotopic composition of the Ca- Ca tracer is known perfectly, based on a separate measurement of the pure spike solution. Initially it is also assumed that the sample calcium has a normal Ca isotopic composition (equivalent to the isotope ratios listed in Table 1). The Ca/ Ca ratio of the tracer is determined based on the results of the mass spectrometry on the tracer-sample mixture, by calculating the effect of removing the sample Ca. This yields a Ca/ Ca ratio for the tracer, which is in general different from that previously determined for the tracer. This difference is attributed to mass discrimination in the spectrometer ion source and is used to calculate a first approximation to the parameter p which describes the instrumental mass discrimination (see below). The first-approximation p is used to correct the measured isotope ratios for mass discrimination, and then a first-approximation tracer/sample ratio and a first-approximation sample CeJ Ca... [Pg.259]

The recovery of the main compound (100%) and all relevant impurities (spiked at, for example, the 0.5% wt/wt level) in a reference solution are calculated against a freshly prepared reference solution as described in the method description. This is done to demonstrate effects of the studied parameters on the recovery. [Pg.174]

FIGURE 8 CE-SDS separations of non-reduced rMAb samples in the presence of spike peaks. Electrophoretic conditions were as follows ProteomeLab PA800 instrument with PDA detection, effective length 21.2cm, total length 31.2cm, 50-pm ID, 375-pm OD uncoated fused-silica capillary both anode and cathode buffers were the Beckman CE-SDS polymer solution. The samples were injected at a constant electric field of l60V/cm for 20 s and electrophoresed at 480V/cm (25 pA) and 20 C. [Pg.411]

PLATE I Determination of the enantiomeric purity of active pharmaceutical ingredient (main compound = MC, peak I is the enantiomeric impurity). Conditions lOOmM sodium phosphate buffer pH = 3.0, lOmM trimethyl -cyclodextrin, 60 cm fused silica capillary (effective length 50 cm) X 75 pm I.D., injection 10 s at 35 mbar, 25°C, 20 kV (positive polarity) resulting in a current of approximately lOOpA, detection UV 230 nm. The sample solution is dissolved in a mixture of 55% (v/v) ethanol in water. (A) Typical electropherogram of an API batch spiked with all chiral impurities, (B) overlay electropherograms showing the selectivity of method toward chiral and achiral impurities, a = blank, b = selectivity solution mixture containing all known chiral and achiral compounds, c = API batch, d = racemic mixture of the main compound and the enantiomeric impurity. [Pg.540]

Optimization of Derivatization Procednre. Three parameters that may affect the partition of aldehydes between the headspace and the solution were tested derivatization time, temperature, and ionic strength. The effect of pH was not examined because it was previously shown that the natural pH of beer, 4.5, is sufficiently low for the derivatization reaction (6). Therefore, the pH of standard mixtures was adjusted to 4.5 using 0.1% phosphoric acid. Because methional appeared to be the most problematic aldehyde to detect, optimization was carried out in a 5% ethanol (pH 4.5) solution spiked with 5 ppb of methional. [Pg.115]

Ideally, the standards should be made up in a solution containing the same normally expected levels of matrix elements as occur in the sample solution. It should be borne in mind that even if they exert no chemical interference, they could possibly exert a viscosity effect on a nebulized solution (especially with high concentrations of phosphoric or sulphuric acids). If it is not possible to determine the matrix components or prepare standards in a matrix solution, and unless experiments have shown matrix interference to be insignificant, then the method of standard additions, or spiking, should be carried out. This is where known amounts of the analyte are added to the sample or sample solution before determination by, e.g. AAS or colorimetry. [Pg.204]

To investigate the effect of both factors (i.e., sample preparation and detector sensitivity), solutions of different concentrations near the ICH reporting limits are prepared by spiking known amounts of related substances into excipients. Each solution is prepared according to the procedure and analyzed repeatedly to determine the S/N ratio. The average S/N ratio from all analyses at each concentration level is used to calculate the QL or DL. The following equation can be used to estimate the QL at each concentration level. Since different concentration levels give different QLs, typically the worst-case QL will be reported as the QL of the method. [Pg.37]

Experimental Requirements. Solutions of known concentrations are used to determine the linearity. A plot of peak area versus concentration (in percent related substance) is used to demonstrate the linearity. Authentic samples of related substances with known purity are used to prepare these solutions. In most cases, for the linearity of a drug product, spiking the related substance authentic sample into excipients is not necessary, as the matrix effect should be investigated in method accuracy. [Pg.39]


See other pages where Solution effect spikes is mentioned: [Pg.419]    [Pg.136]    [Pg.329]    [Pg.388]    [Pg.226]    [Pg.289]    [Pg.654]    [Pg.155]    [Pg.30]    [Pg.400]    [Pg.226]    [Pg.84]    [Pg.114]    [Pg.37]    [Pg.306]    [Pg.132]    [Pg.141]    [Pg.157]    [Pg.295]    [Pg.38]    [Pg.231]    [Pg.276]    [Pg.494]    [Pg.221]    [Pg.37]    [Pg.194]    [Pg.232]    [Pg.420]    [Pg.166]    [Pg.622]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Spike

Spike solutions

Spiking

Spiking solutions

© 2024 chempedia.info