Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions chemical equilibrium

Among the nine chemical reactions that occur in the aqueous solution, chemical equilibrium is only attained for six of the reactions. The... [Pg.137]

Santore, R.C. and Driscoll, C.T. (1995). The CHESS Model for Calculating Chemical Equilibria in Soils and Solutions, Chemical Equilibrium and Reaction Models. The Soil Society of America, American Society of Agronomy... [Pg.524]

An example of enhanced ion production. The chemical equilibrium exists in a solution of an amine (RNH2). With little or no acid present, the equilibrium lies well to the left, and there are few preformed protonated amine molecules (ions, RNH3+) the FAB mass spectrum (a) is typical. With more or stronger acid, the equilibrium shifts to the right, producing more protonated amine molecules. Thus, addition of acid to a solution of an amine subjected to FAB usually causes a large increase in the number of protonated amine species recorded (spectrum b). [Pg.19]

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

It is known that the order of acidity of hydrogen halides (HX, where X = F, Cl, Br, I) in the gas phase can be successfully predicted by quantum chemical considerations, namely, F < Cl < Br < I. However, in aqueous solution, whereas hydrogen chloride, bromide, and iodide completely dissociate in aqueous solutions, hydrogen fluoride shows a small dissociation constant. This phenomenon is explained by studying free energy changes associated with the chemical equilibrium HX + H2O + HjO in the solu-... [Pg.431]

Adsorption — An important physico-chemical phenomenon used in treatment of hazardous wastes or in predicting the behavior of hazardous materials in natural systems is adsorption. Adsorption is the concentration or accumulation of substances at a surface or interface between media. Hazardous materials are often removed from water or air by adsorption onto activated carbon. Adsorption of organic hazardous materials onto soils or sediments is an important factor affecting their mobility in the environment. Adsorption may be predicted by use of a number of equations most commonly relating the concentration of a chemical at the surface or interface to the concentration in air or in solution, at equilibrium. These equations may be solved graphically using laboratory data to plot "isotherms." The most common application of adsorption is for the removal of organic compounds from water by activated carbon. [Pg.163]

EquatitHis (8.4)-(8.8) represent a complete mathematical description of the chemical equilibrium between a rich phase and the y th MSA. The simultaneous solution... [Pg.194]

Guldberg and Waage (1867) clearly stated the Law of Mass Action (sometimes termed the Law of Chemical Equilibrium) in the form The velocity of a chemical reaction is proportional to the product of the active masses of the reacting substances . Active mass was interpreted as concentration and expressed in moles per litre. By applying the law to homogeneous systems, that is to systems in which all the reactants are present in one phase, for example in solution, we can arrive at a mathematical expression for the condition of equilibrium in a reversible reaction. [Pg.16]

It can be shown, (Gibbs, Scientific Papers, I. J. J. Thomson, Applications of Dynamics to Physics and Chemistry), that a chemical equilibrium can be modified by the action of capillary forces. Thus, a state of equilibrium in solution may conceivably be modified if the latter is in the form of thin films, such as soap bubbles. Since, according to Freundlich (Kapillarchemie, 116), there is at present no direct evidence of the existence of such modification (which would no doubt be exceedingly, though possibly measurably, small) we shall not enter any further into the matter here. [Pg.447]

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

Adsorption Coefficient (K c)—The ratio of the amount of a chemical adsorbed per unit weight of organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. [Pg.241]

The adsorption isotherms for each chemical, Triton X-100 or phenanthrene, on the activated carbons were shown in Figs. 1 and 2. The adsorption isotherms are expressed as qg [g g ], the amount of compounds adsorbed per unit mass of adsorbent, as a fimction of Q [g l ], the concentration in solution at equilibrium [5, 6]. The best-fit parameters for Freimdlich isotherms (g = or linear isotherms (q - Kj C ) were summarized in Table 2. The... [Pg.462]

We illustrate this approach using the equilibrium shown in Figure 16-10. When solid LiF is added to water, a small amount of the salt dissolves, leading to equilibrium between the solid and a solution. Chemical analysis reveals that the equilibrium concentration of F ions in the solution is 6.16 X 10 M. We want to determine the equilibrium constant for this process. [Pg.1164]

In some problems, concentrations at equilibrium are provided, hi other problems concentrations at equilibrium must be calculated, usually by using amounts tables (see Chapter In this example, we are told that a solution of LiF at chemical equilibrium has [F ]gg =6.16x 10 M. The stoichiometric ratio of LiF is 1 1, so an equal amount of Li dissolves [Li+]gg = 6.16 X 10 M. [Pg.1165]

For example, if sphalerite is in equilibrium with aqueous solution, the chemical equilibrium for the following reaction can be derived. [Pg.49]

Several workers have intended to estimate the chemical compositions of Kuroko ore fluids based on the chemical equilibrium model (Sato, 1973 Kajiwara, 1973 Ichikuni, 1975 Shikazono, 1976 Ohmoto et al., 1983) and computer simulation of the changes in mineralogy and chemical composition of hydrothermal solution during seawater-rock interaction. Although the calculated results (Tables 1.5 and 1.6) are different, they all show that the Kuroko ore fluids have the chemical features (1 )-(4) mentioned above. [Pg.50]

There are different approaches to the study of hydrothermal alteration. For instance, Shikazono (1978a) showed the relationship between chemical composition of hydrothermal solution in equilibrium with the alteration minerals and Cl concentration in hydrothermal solution. [Pg.122]

Figure 1.86 illustrates the variations in the chemical composition of chloride-rich hydrothermal solution in equilibrium with common alteration minerals with temperature. Figure 1.86 demonstrates that (1) the chemical compositions of hydrothermal solution... [Pg.122]

Figure 1.86. Variation in chemical compositions (in molal unit) of hydrothermal solution with temperature. Thermochemical data used for the calculations are from Helgeson (1969). Calculation method is given in Shikazono (1978a). Chloride concentration in hydrothermal solution is assumed to be 1 mol/kg H2O. A-B Na concentration in solution in equilibrium with low albite and adularia, C-D K concentration in solution in equilibrium with low albite and adularia, E-F HaSiOa concentration in equilibrium with quartz, G-H Ca + concentration in equilibrium with albite and anorthite (Shikazono, 1978a, 1988b). Figure 1.86. Variation in chemical compositions (in molal unit) of hydrothermal solution with temperature. Thermochemical data used for the calculations are from Helgeson (1969). Calculation method is given in Shikazono (1978a). Chloride concentration in hydrothermal solution is assumed to be 1 mol/kg H2O. A-B Na concentration in solution in equilibrium with low albite and adularia, C-D K concentration in solution in equilibrium with low albite and adularia, E-F HaSiOa concentration in equilibrium with quartz, G-H Ca + concentration in equilibrium with albite and anorthite (Shikazono, 1978a, 1988b).
The concentrations of base-metals (Cu, Fe, Pb, and Zn) in hydrothermal solution in equilibrium with sulfides (chalcopyrite, pyrite, galena and sphalerite) depend on several variables such as pH, ntQx- concentration, temperature, /WH2S, and fo2- The relation between the concentrations and these variables can be derived based on the chemical equilibrium for the following reactions. [Pg.142]

Wolery, T.J. (1978) Some chemical aspects of hydrothermal processes at midoceanic ridges — A theoretical study I, Basalt-seawater reaction and chemical cycling between the oceanic crust and the oceans. II, Calculation of chemical equilibrium between aqueous solutions and minerals. Ph.D. Thesis, Northwestern U. [Pg.292]

The chemistry of hydrothermal solutions from midoceanic ridges has been reasonably explained by the effect of buffering by alteration minerals (Seyfried, 1987 Bemdt et al., 1989). Therefore, it might be worth explaining the chemical composition of hydrothermal solutions from back-arc basins in terms of chemical equilibrium between hydrothermal solutions and alteration minerals. [Pg.342]

Figure 4.17 General phenonenaloglcal retention model for a solute that participates in a secondary chemical equilibrium in liquid chromatography. A - solute, X - equilibrant, AX analyte-equilibrant coeplex, Kjq - secondary chemical equilibrium constant, and and are the primary distribution constants for A and AX, respectively, between the mobile and stationary phases. Figure 4.17 General phenonenaloglcal retention model for a solute that participates in a secondary chemical equilibrium in liquid chromatography. A - solute, X - equilibrant, AX analyte-equilibrant coeplex, Kjq - secondary chemical equilibrium constant, and and are the primary distribution constants for A and AX, respectively, between the mobile and stationary phases.
With a three-component system, such as a polymer in an aqueous salt solution, preferential adsorption of one component to the polymer can affect the analysis of light-scattering data.199 Such interactions can affect the SRI. Therefore, measurements of the SRI must be made at constant chemical potential. Constant chemical potential is achieved experimentally by dialyzing the solvent and polymer solution to equilibrium through a membrane permeable to the solvent but impermeable to the polymer.199... [Pg.348]


See other pages where Solutions chemical equilibrium is mentioned: [Pg.147]    [Pg.555]    [Pg.134]    [Pg.120]    [Pg.147]    [Pg.555]    [Pg.134]    [Pg.120]    [Pg.392]    [Pg.2585]    [Pg.25]    [Pg.438]    [Pg.246]    [Pg.191]    [Pg.510]    [Pg.4]    [Pg.98]    [Pg.369]    [Pg.656]    [Pg.656]    [Pg.261]    [Pg.1]    [Pg.409]    [Pg.79]    [Pg.513]    [Pg.35]    [Pg.462]   
See also in sourсe #XX -- [ Pg.193 , Pg.198 ]

See also in sourсe #XX -- [ Pg.315 , Pg.316 , Pg.317 , Pg.318 , Pg.319 , Pg.320 , Pg.321 , Pg.322 , Pg.323 , Pg.324 , Pg.325 ]




SEARCH



Affinity and chemical equilibrium in solutions

Aqueous Solutions and Chemical Equilibria

Chemical Equilibria in Gases, Solids, and Solutions

Chemical equilibrium buffer solutions

Chemical equilibrium buffered solutions

Chemical equilibrium electrolyte solutes

Chemical equilibrium in non ideal solutions classical theory

Chemical equilibrium in the ideal solution

Equilibrium, chemical solution-crystal

Equilibrium, chemical solution-vapour

Ideal solution chemical equilibrium

Solutal equilibrium

Solutes equilibrium

Solution, affinity chemical equilibrium

Solutions equilibrium

© 2024 chempedia.info