Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids, thermodynamic quantities

Systems involving an interface are often metastable, that is, essentially in equilibrium in some aspects although in principle evolving slowly to a final state of global equilibrium. The solid-vapor interface is a good example of this. We can have adsorption equilibrium and calculate various thermodynamic quantities for the adsorption process yet the particles of a solid are unstable toward a drift to the final equilibrium condition of a single, perfect crystal. Much of Chapters IX and XVII are thus thermodynamic in content. [Pg.2]

The solid is pale blue the liquid is an intense blue at low temperatures but the colour fades and becomes greenish due to the presence of NO2 at higher temperatures. The dissociation also limits the precision with which physical properties of the compound can be determined. At 25°C the dissociative equilibrium in the gas phase is characterized by the following thermodynamic quantities ... [Pg.454]

Gold-copper, alloy (Au5Cu5, AuBCuB(S)), calculation of thermodynamic quantities, 136, 142 solid solution (CuAu), 129 Gold-lead, alloy (Au5Pb5), calculation of thermodynamic quantities, 136 Gold-nickel, alloy (Au5Ni8), calculation of thermodynamic quantities, 136, 142... [Pg.406]

Lead, excess entropy of solution of noble metals in, 133 Lead-thalium, solid solution, 126 Lead-tin, system, energy of solution, 143 solution, enthalpy of formation, 143 Lead-zinc, alloy (Pb8Zn2), calculation of thermodynamic quantities, 136 Legendre expansion in total ground state wave function of helium, 294 Lennard-Jones 6-12 potential, in analy-... [Pg.408]

The most fundamental manner of demonstrating the relationship between sorbed water vapor and a solid is the water sorption-desorption isotherm. The water sorption-desorption isotherm describes the relationship between the equilibrium amount of water vapor sorbed to a solid (usually expressed as amount per unit mass or per unit surface area of solid) and the thermodynamic quantity, water activity (aw), at constant temperature and pressure. At equilibrium the chemical potential of water sorbed to the solid must equal the chemical potential of water in the vapor phase. Water activity in the vapor phase is related to chemical potential by... [Pg.390]

Methanol and Water. Methanol and water mixtures have been a popular choice for workers interested in free energies of transfer of ions from water into a mixed solvent. Such mixtures exhibit a drop in dielectric constant with increasing methanol content. Hence the electrical term must be estimated in order to compare spectroscopic and thermodynamic quantities. Feakins and Voice (28) have presented new data and revised earlier data for the alkali metal chlorides. In advance of carefully determined and extrapolated emf data for fluorides, using the solid state fluoride selective electrode based on lanthanum fluoride, some data of moderate accuracy have been presented (27). On the... [Pg.170]

Explain qualitatively how the aqueous solubility of a (a) liquid, (b) solid, and (c) gaseous compound changes with temperature. Which thermodynamic quantity(ies) do you need to know for quantifying this temperature dependence ... [Pg.176]

Fig. 8.8 Comparisons between calculated (solid lines) and experimental (points) thermodynamic quantities for the CH3 molecule. Fig. 8.8 Comparisons between calculated (solid lines) and experimental (points) thermodynamic quantities for the CH3 molecule.
In most common chemical reactions, one or more of the reactants is in solution. Thus, an easy method to determine thermodynamic quantities of solution is desirable. Enthalpy of solution (heat of solution) is defined as the change in the quantity of heat which occurs due to a combination of a particular solute (gas, liquid, or solid) with a specified amount of solvent to form a solution. If the solution consists of two liquids, the enthalpy change upon mixing the separate liquids is called the heat of mixing. When additional solvent is added to the solution to form a solution of lower solute concentration, the heat effect is called the heat of dilution. The definitions of free energy of solution, entropy of solution, and so on follow the pattern of definitions above. [Pg.568]

For the convenience of tabulation and compulation of thermodynamic data, it is essential lo present them in a commonly accepted form relative to a single standard slate of reference. At all lemperatures, the standard stale for a pure liquid or solid is the condensed phase under a pressure of I atmosphere. The standard stale for a gas is the hypothetical ideal gas at anil fugarity (equivalent til a perfect gas" stale), in which state the enthalpy is that of the real gas at the same temperature when the pressure approaches aero. Values of thermodynamic quantities for standard-state conditions are identified by a superscriptQ. and Hn. for instance, is the enthalpy change of a reaction when reactants and products are in the standard state. [Pg.567]

The thermodynamic quantity 0y is a reduced standard-state chemical potential difference and is a function only of T, P, and the choice of standard state. The principal temperature dependence of the liquidus and solidus surfaces is contained in 0 j. The term is the ratio of the deviation from ideal-solution behavior in the liquid phase to that in the solid phase. This term is consistent with the notion that only the difference between the values of the Gibbs energy for the solid and liquid phases determines which equilibrium phases are present. Expressions for the limits of the quaternary phase diagram are easily obtained (e.g., for a ternary AJB C system, y = 1 and xD = 0 for a pseudobinary section, y = 1, xD = 0, and xc = 1/2 and for a binary AC system, x = y = xAC = 1 and xB = xD = 0). [Pg.146]

A general formulation of the problem of solid-liquid phase equilibrium in quaternary systems was presented and required the evaluation of two thermodynamic quantities, By and Ty. Four methods for calculating Gy from experimental data were suggested. With these methods, reliable values of Gy for most compound semiconductors could be determined. The term Ty involves the deviation of the liquid solution from ideal behavior relative to that in the solid. This term is less important than the individual activity coefficients because of a partial cancellation of the composition and temperature dependence of the individual activity coefficients. The thermodynamic data base available for liquid mixtures is far more extensive than that for solid solutions. Future work aimed at measurement of solid-mixture properties would be helpful in identifying miscibility limits and their relation to LPE as a problem of constrained equilibrium. [Pg.171]

Here, 7s is called the generalized surface intensive parameter or surface energy. 7s is not a real thermodynamic quantity since it depends on the history of the solid [325]. It depends... [Pg.153]

The essential thermodynamic quantity for the liquid trihalides is the heat capacity, which in combination with the data for the solid phase gives the enthalpy/entropy of fusion. With these two quantities the Gibbs energy of the liquid phase can be calculated and extrapolated to the super-cooled state, if needed. [Pg.175]

In the present chapter, we have laid the foundations for a statistical study of the equation of state of solids, though we have not made any use of a model, and hence have not been able to compute the thermodynamic quantities we have been talking about. We proceed in the next chapter to a discussion of atomic vibrations in solids, with a view to finding more accurate information about specific heats and thermal expansion. Later, when we study different types of solids more in detail, we shall make comparisons with experiment for many special cases. [Pg.221]

In the previous section it was shown that the term heat of adsorption may represent different functions, depending on the experimental conditions under which it is determined. The situation is analogous with the entropy of adsorption which can also be defined in several ways (/1). It is always necessary to specify whether the function considered is a true differential, a derivative, or an integral entropy, and also whether it refers to an equilibrium state (defined by p and T) or to a standard state (defined by p° and T). Moreover, various entropies of adsorption may be defined by choosing different standard states for the adsorptive (this state may be gaseous, but also liquid or solid). In this section, all the thermodynamic quantities of the adsorbate will be defined relative to a Gibbs surface for simplicity, but defining them in terms of an interfacial layer yields the same results. [Pg.158]

The mechanism of heat conduction in solids and fluids is difficult to understand theoretically. We do not need to look closely at this theory it is principally used in the calculation of thermal conductivity, a material property. We will limit ourselves to the phenomenological discussion of heat conduction, using the thermodynamic quantities of temperature, heat flow and heat flux, which are sufficient to deal with most technically interesting conduction problems. [Pg.2]

The standard state of a substance is a reference state that allows us to obtain relative values of such thermodynamic quantities as free energy, activity, enthalpy, and entropy. All substances are assigned unit activity in their standard state. For gases, the standard state has the properties of an ideal gas, but at one atmosphere pressure. It is thus said to be a hypothetical state. For pure liquids and solvents, the standard states are real states and are the pure substances at a specified temperature and pressure. For solutes In dilute solution, the standard state is a hypothetical state that has the properties of an infinitely dilute solute, but at unit concentration (molarity, molality, or mole fraction). The standard state of a solid is a real state and is the pure solid in its most stable crystalline form. [Pg.502]


See other pages where Solids, thermodynamic quantities is mentioned: [Pg.176]    [Pg.176]    [Pg.335]    [Pg.687]    [Pg.13]    [Pg.77]    [Pg.511]    [Pg.83]    [Pg.95]    [Pg.159]    [Pg.96]    [Pg.168]    [Pg.197]    [Pg.333]    [Pg.395]    [Pg.131]    [Pg.1]    [Pg.225]    [Pg.369]    [Pg.17]    [Pg.73]    [Pg.117]    [Pg.1639]    [Pg.266]    [Pg.3144]    [Pg.597]    [Pg.152]    [Pg.1597]    [Pg.2326]    [Pg.191]   


SEARCH



Thermodynamic quantities

© 2024 chempedia.info