Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid solutions, metals

We usually think of a solution as a solid dissolved in a liquid or as a mixture of liquids, but there are many other kinds of solutions as well. In fact, any one state of matter can form a solution with any other state, and seven different kinds of solutions are possible (Table 11.1). Even solutions of one solid with another and solutions of a gas in a solid are well known. Metal alloys, such as stainless steel (4-30% chromium in iron) and brass (10 40% zinc in copper) are solid/solid solutions, and hydrogen in palladium is a gas/solid solution. Metallic palladium, in fact, is able to absorb up to 935 times its own volume of H2 gas. [Pg.430]

In practical metallurgy, the systems encountered are usually more complex than the simple binary ones depicted above. Chosen metals, or their alloys, usually contain (unavoidably or by design) quite a number of impurities , all of which may affect the properties of the product. Common non-metallic impurities are C Si, S and P, all of which are possible candidates for introducing lattice addition of some kind or other. The larger sizes of Si, S and P compared to those of B, C, N and O would seem to make them less likely than the latter to participate in interstitial solid solutions. Metallic impurities, if not involved in substitutional solid solution, may form new compounds which crystallise at the grain boundaries. [Pg.1200]

Hahn and Muan (1962) used this method to determine the thermodynamic properties of Mg0- Fe0 oxide solutions by studying the assemblage (Mg,Fe)0 solid solution, metallic iron, gas. Equilibrium coexistence of the oxidegg, pure iron and gas of known ao2 fixes the activity of FeO in the oxide solid solution through the relationship ... [Pg.13]

When solutions containing isomorphous (identical crystal structures and sizes) metal ions undergo crystallization they form a new solid, resulting in solid solutions. Metal hydrazine carboxylate hydrates combine with lead to form a solid solution of lead hydroxy hydrazine carboxylate complex. Lead hydroxy metal hydrazine carboxylate hydrates of the type PbM0(0H)2(N2H3C00)2-xH20, where M = Zr and Ti, are prepared by the reaction of the corresponding ions in aqueous solutions with hydrazine carboxylic acid and ammonia [13,14] ... [Pg.142]

Metals A and B form an alloy or solid solution. To take a hypothetical case, suppose that the structure is simple cubic, so that each interior atom has six nearest neighbors and each surface atom has five. A particular alloy has a bulk mole fraction XA = 0.50, the side of the unit cell is 4.0 A, and the energies of vaporization Ea and Eb are 30 and 35 kcal/mol for the respective pure metals. The A—A bond energy is aa and the B—B bond energy is bb assume that ab = j( aa + bb)- Calculate the surface energy as a function of surface composition. What should the surface composition be at 0 K In what direction should it change on heaf)pg, and why ... [Pg.286]

Another method by which metals can be protected from corrosion is called alloying. An alloy is a multicomponent solid solution whose physical and chemical properties can be tailored by varying the alloy composition. [Pg.923]

The tables in this section contain values of the enthalpy and Gibbs energy of formation, entropy, and heat capacity at 298.15 K (25°C). No values are given in these tables for metal alloys or other solid solutions, for fused salts, or for substances of undefined chemical composition. [Pg.532]

Table 1 fists many metal borides and their observed melting points. Most metals form mote than one boride phase and borides often form a continuous series of solid solutions with one another at elevated temperatures thus close composition control is necessary to achieve particular properties. The relatively small size of boron atoms facilitates diffusion. [Pg.218]

From a general point of view, the tautomeric studies can be divided into 12 areas (Figure 20) depending on the migrating entity (proton or other groups, alkyl, acyl, metals. ..), the physical state of the study (solid, solution or gas phase) and the thermodynamic (equilibrium constants) or the kinetic (isomerization rates) approach. [Pg.211]

PECULIARITIES OF DETERMINATION OF COMPOSITION OF THE SOLID SOLUTIONS OF THE BIVALENT METALS HYDRATED DIPHOSPHATES... [Pg.182]

Questions of the analytic control of maintenance of the bivalent metals cations to their joint presence in materials of diverse fixing always were actual. A simultaneous presence in their composition of two cations with like descriptions makes analysis by sufficiently complicated process. Determination of composition still more complicates, if analyzed object is a solid solution, in which side by side with pair of cations (for example, Mg " -Co ", Mn -Co, Zn -Co ) attends diphosphate anion. Their analysis demands for individual approach to working of methods using to each concrete cations pair. [Pg.182]

In the examples given below, the physical effects are described of an order-disorder transformation which does not change the overall composition, the separation of an inter-metallic compound from a solid solution the range of which decreases as the temperature decreases, and die separation of an alloy into two phases by spinodal decomposition. [Pg.189]

In the kinetics of formation of carbides by reaction of the metal widr CH4, the diffusion equation is solved for the general case where carbon is dissolved into tire metal forming a solid solution, until the concentration at the surface reaches saturation, when a solid carbide phase begins to develop on the free surface. If tire carbide has a tirickness at a given instant and the diffusion coefficient of carbon is D in the metal and D in the carbide. Pick s 2nd law may be written in the form (Figure 8.1)... [Pg.263]

The equation for the rate of oxidation of the transition metals at high temperatures, which form a solid solution of oxygen before the oxide appears at the surface has die same form as that derived for die carburizing of die metal, and... [Pg.264]

The most successful way of combating exhaust-system corrosion is, in fact, stainless steel. This is a good example of how - just as with dry oxidation - the addition of foreign atoms to a metal can produce stable oxide films that act as barriers to corrosion. In the case of stainless steel, Cr is dissolved in the steel in solid solution, and Cr203 forms on the surface of the steel to act as a corrosion barrier. [Pg.237]

As you can see from the tables in Chapter 1, few metals are used in their pure state -they nearly always have other elements added to them which turn them into alloys and give them better mechanical properties. The alloying elements will always dissolve in the basic metal to form solid solutions, although the solubility can vary between <0.01% and 100% depending on the combinations of elements we choose. As examples, the iron in a carbon steel can only dissolve 0.007% carbon at room temperature the copper in brass can dissolve more than 30% zinc and the copper-nickel system - the basis of the monels and the cupronickels - has complete solid solubility. [Pg.16]

The things that we have been talking about so far - metal crystals, amorphous metals, solid solutions, and solid compounds - are all phases. A phase is a region of material that has uniform physical and chemical properties. Water is a phase - any one drop of water is the same as the next. Ice is another phase - one splinter of ice is the same as any other. But the mixture of ice and water in your glass at dinner is not a single phase because its properties vary as you move from water to ice. Ice + water is a two-phase mixture. [Pg.18]

A phase is a region of material that has uniform physical and chemical properties. Phases are often given Greek symbols, like a or fi. But when a phase consists of a solid solution of an alloying element in a host metal, a clearer symbol can be used. As an example, the phases in the lead-tin system may be symbolised as (Pb) - for the solution of tin in lead, and (Sn) - for the solution of lead in tin. [Pg.25]

When other elements dissolve in a metal to form a solid solution they make the metal harder. The solute atoms differ in size, stiffness and charge from the solvent atoms. Because of this the randomly distributed solute atoms interact with dislocations and make it harder for them to move. The theory of solution hardening is rather complicated, but it predicts the following result for the yield strength... [Pg.101]

Fig. 17.1. (a) Dislocation motion is intrinsically easy in pure metals - though alloying to give solid solutions or precipitates con moke it more difficult. (b) Dislocation motion in covalent solids is intrinsically difficult because the interatomic bonds must be broken and reformed. ( ) Dislocation motion in ionic crystals is easy on some planes, but hard on others. The hard systems usually dominate. [Pg.179]

A new, low-pressure, plasma-assisted proeess for synthesising diamonds has been found by Roy et al [83,84]. An intimate mixture of various forms of carbon with one of many metals (e.g., Au, Ag, Fe, Cu, Ni) is exposed to a microwave plasma derived from pure hydrogen at temperatures ranging from 600-1000 °C. Roy et al postulate a mechanism in which a solid solution of atomic hydrogen and the metal. Me, facilitates dissolution of carbon to form molten droplets of Me -Cj,-H. Diamonds nucleate at the surface of the droplets as the temperature is reduced. [Pg.18]


See other pages where Solid solutions, metals is mentioned: [Pg.146]    [Pg.145]    [Pg.821]    [Pg.146]    [Pg.145]    [Pg.821]    [Pg.366]    [Pg.171]    [Pg.453]    [Pg.126]    [Pg.129]    [Pg.154]    [Pg.158]    [Pg.167]    [Pg.182]    [Pg.190]    [Pg.195]    [Pg.266]    [Pg.267]    [Pg.301]    [Pg.104]    [Pg.105]    [Pg.16]    [Pg.17]    [Pg.18]    [Pg.173]    [Pg.328]    [Pg.84]    [Pg.104]    [Pg.122]   


SEARCH



Metal solutions

Metallic solids

Solutions metallic

© 2024 chempedia.info