Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid-phase, anhydride formation

Unsymmetrical as well as symmetrical anhydrides are often prepared by the treatment of an acyl halide with a carboxylic acid salt. The compound C0CI2 has been used as a catalyst. If a metallic salt is used, Na , K , or Ag are the most common cations, but more often pyridine or another tertiary amine is added to the free acid and the salt thus formed is treated with the acyl halide. Mixed formic anhydrides are prepared from sodium formate and an aryl halide, by use of a solid-phase copolymer of pyridine-l-oxide. Symmetrical anhydrides can be prepared by reaction of the acyl halide with aqueous NaOH or NaHCOa under phase-transfer conditions, or with sodium bicarbonate with ultrasound. [Pg.490]

There are solid phase enthalpy of formation data for four aromatic acyl peroxides dibenzoyl peroxide and the bis-o- and bis-p-toluyl derivatives and dicinnamoyl peroxide. The last three were reported in the same publication . The first disconcerting observation is that the p-methyl substituted benzoyl peroxide is less stable than the ortho isomer by nearly 50 kJmol. We cannot reconcile the large difference between the enthalpies of formation of these two isomers, especially since the corresponding anhydrides have comparable enthalpies of formation, —521.0 + 7.9 (p ) and —533.5 + 7.9 (o )kJmol . However, they too exhibit an unexpected stability order and were measured by the same... [Pg.162]

The enthalpies of reaction 16 for solid and gaseous dibenzoyl peroxide are —45.8 and —47.3 kJmoU, respectively. These values are much smaller than those calculated for the liquid dialkyl peroxides ca —56 kJmoU ), the acyl peresters ca —70 kJmoU ) or the non-aromatic diacyl peroxides (—89 or —59 kJmol ). However, we have no reason not to accept the result. It would be futile to use this result for further calculations concerning the solid phase enthalpies of formation of bis(o-toluyl) peroxide, bis(p-toluyl) peroxide and dicinnamoyl peroxide because all the peroxide and the anhydride product enthalpy of formation data are from the same suspect source . [Pg.163]

Detection in liquid chromatography is mostly performed by fluorescence and/or ultraviolet absorption. In a few instances, electrochemical detection has also been employed (357, 368). For compounds that exhibit inherent intense fluorescence such as albendazole and metabolites (319, 320, 338, 355), closantel (344), and thiabendazole and metabolites (378), fluorometric detection is the preferred detection mode since it allows higher sensitivity. Compounds that do not fluoresce such as eprinomectin, moxidectin, and ivermectin, are usually converted to fluorescent derivatives prior to their injection into the liquid chromatographic analytical column. The derivatization procedure commonly applied for this group of compounds includes reaction with trifluoroacetic anhydride in presence of A-methylimidazole as a base catalyst in acetonitrile (346, 347, 351, 352, 366, 369, 372-374). The formation of the fluorophore is achieved in 30 s at 25 C and results in a very stable derivative of ivermectin and moxidectin (353) but a relatively unstable derivative of eprinomectin (365). However, the derivatized extracts are not pure enough, so that their injection dramatically shortens the life of the liquid chromatographic column unless a silica solid-phase extraction cleanup is finally applied. [Pg.1025]

Less reactive than acyl halides, but still suitable for difficult couplings, are symmetric or mixed anhydrides (e.g. with pivalic or 2,6-dichlorobenzoic acid) and HOAt-derived active esters. HOBt esters smoothly acylate primary or secondary aliphatic amines, including amino acid esters or amides, without concomitant esterification of alcohols or phenols [34], HOBt esters are the most commonly used type of activated esters in automated solid-phase peptide synthesis. For reasons not yet fully understood, acylations with HOBt esters or halophenyl esters can be effectively catalyzed by HOBt and HOAt [3], and mixtures of BOP (in situ formation of HOBt esters) and HOBt are among the most efficient coupling agents for solid-phase peptide synthesis [2]. In acylations with activated amino acid derivatives, the addition of HOBt or HOAt also retards racemization [4,12,35]. [Pg.328]

Few preparations of nitriles have been performed on insoluble supports (Table 13.19). Aromatic and heteroaromatic nitriles have been prepared on solid phase from the corresponding iodoarenes by metallation followed by reaction with tosyl cyanide (Entry 1, Table 13.19). Moreover, the reaction of chloromethyl polystyrene with NaCN has been used to prepare support-bound benzyl cyanide (Entry 2, Table 13.19). Cleavage with simultaneous formation of nitriles can be achieved by treating polystyrene-bound sulfonylhydrazones with KCN (Entry 3, Table 13.19) or by cleaving amides from a Rink or Sieber linker with TFA anhydride (Entry 10, Table 3.38 [262]). Support-bound benzaldehydes have been converted into 3-aryl-2-propenenitriles by means of a Horner-Emmons reaction with (Et0)2P(0)CH2CN [263]. [Pg.358]

In the solid phase reaction the anhydride formation is the predominant pathway. Reaction with radioactive DCC has shown that less than 0.2 % of the polymer-bound amine reacts directly with the reagent. ... [Pg.121]

Other organo-phosphorous reagents are based on the mixed carboxylic-phosphoric or phosphinic anhydrides. Initially used to convert carboxylic acids into acyl azides, DPPA 12 has been introduced as a one-pot coupling reagent for peptide chemistry (32), and it was adapted later to solid-phase chemistry (81). The driving force of these reactions is the formation of the phosphoric or phosphinic acids and their salts. Later DPP-Cl 49 (82) and FDPP 50 were introduced. FDPP 50 has been used successfully in macro cyclizations (83). Examples of... [Pg.1983]

For reactions carried out in homogeneous solution or under solid-phase conditions the use of Fmoc amino acid chlorides is limited by the competition between their aminolysis and the formation of the less reactive oxazol-5(4//)-ones in the presence of tertiary amines, which are essential components of such reaction systems. To improve the results under these conditions a hindered base, e.g. 2,6-di-/er/-butylpyridine, can be used as a hydrogen chloride acceptor since conversion to oxazol-5(4//)-one is slow with such bases. Although shown to be advantageous in certain cases, Fmoc amino acid chlorides are used in homogeneous solution synthesis only in particular cases. They react efficiently in the presence of pyridine with weak nucleophiles such as imine 2P l (Scheme 2) where other activated species such as an active ester, anhydride, acyl fluoride, and acyl imidazolide fail. [Pg.478]

The oxidation-reduction method, developed initially by Mukaiyama et al. [133] and related to the previously described organophosphorus methods, has permitted a variety of important solid-phase applications. The mechanism of the activation is complex and involves the oxidation of the triaryl/ alkyl-phosphine to the oxide as well as reduction of the disulfide to the mercapto derivative. However, different active species, such as 81 (Fig. 11), the 2-pyridyl thioester, or even the symmetrical anhydride, have been postulated to form. For the intermediate 81, the peptide bond formation may proceed through a (cyclic transition state. The method has been used for conventional stepwise synthesis [134], acylation of the first protected amino acid to a hydroxymethyl resin, and to achieve segment condensation on a solid support in the opposite direction (N C) [135,136]. Lastly, it has been used for efficient grafting of a polyethylene glycol (molecular weight 2000) derivative to an aminomethyl resin to prepare PEG-PS resins [137]. [Pg.293]

Isoquinoline derivatives are an important family of natural products. They have diverse biological activities and are used, for example, as bronchodi-lators, skeletal muscle relaxants, and antiseptics. The solid-phase synthesis of a 43,000-compound tetrahydroisoquinoline 2 combinatorial library has been reported by Griffith et al. [32]. The library was synthesized by a three-step procedure. An imine was formed by reacting a substituted benzaldehyde with a methylbenzhydrylamine (MB HA) resin-bound amino acid. Imine formation was driven to completion using trimethylorthoformate as a dehydrating reagent. Treatment of the imine with homophthalic anhydride provided the desired tetrahydroisoquinoline (Fig. 3a). [Pg.622]


See other pages where Solid-phase, anhydride formation is mentioned: [Pg.144]    [Pg.153]    [Pg.28]    [Pg.79]    [Pg.223]    [Pg.254]    [Pg.283]    [Pg.64]    [Pg.144]    [Pg.307]    [Pg.144]    [Pg.181]    [Pg.265]    [Pg.204]    [Pg.237]    [Pg.156]    [Pg.391]    [Pg.117]    [Pg.32]    [Pg.1977]    [Pg.193]    [Pg.425]    [Pg.503]    [Pg.513]    [Pg.573]    [Pg.712]    [Pg.307]    [Pg.487]    [Pg.15]    [Pg.144]    [Pg.330]    [Pg.211]    [Pg.347]    [Pg.18]    [Pg.590]    [Pg.94]   
See also in sourсe #XX -- [ Pg.1422 ]




SEARCH



Anhydrides formation

Phase formation

Solid formation

Solid phase formation

Solid-phase, anhydride

© 2024 chempedia.info