Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Species differences activities

For gases, pure solids, pure liquids, and nonionic solutes, activity coefficients are approximately unity under most reasonable experimental conditions. For reactions involving only these species, differences between activity and concentration are negligible. Activity coefficients for ionic solutes, however, depend on the ionic composition of the solution. It is possible, using the extended Debye-Htickel theory, to calculate activity coefficients using equation 6.50... [Pg.173]

Oxytocin and Vasopressin Receptors. The actions of oxytocin and vasopressin are mediated through their interactions with receptors. Different receptor types as well as different second messenger responses help explain their diverse activities in spite of the hormones stmctural similarities. Thus oxytocin has at least one separate receptor and vasopressin has been shown to have two principal receptor types, and V2. Subclasses of these receptors have been demonstrated, and species differences further compHcate experimental analysis. It is apparent that both oxytocin and receptors function through the GP/1 phosphoHpase C complex (75), while the V2 receptors activate cycHc AMP (76). [Pg.191]

When methyl parathion was given orally to rats at doses of 1.5 mg/kg and to guinea pigs at 50 mg/kg, plasma, erythrocyte, and brain cholinesterase activity was maximally inhibited within 30 minutes after administration. In rodents of both species that died after acute intoxication, brain cholinesterase levels decreased to 20% of control values and often to 5-7% (Miyamoto et al. 1963b). The species difference in susceptibility to orally administered methyl parathion is noted in Section 3.2.2.1. [Pg.70]

There are marked species differences in A-esterase activity. Birds have very low, often undetectable, levels of activity in plasma toward paraoxon, diazoxon, pirimi-phos-methyl oxon, and chlorpyrifos oxon (Brealey et al. 1980, Mackness et al. 1987, Walker et al. 1991 Figure 2.10). Mammals have much higher plasma A-esterase activities to all of these substrates. The toxicological implications of this are discussed in Chapter 10. Some species of insects have no measurable A-esterase activity, even in strains that have resistance to OPs (Mackness et al. 1982, Walker 1994). These include the peach potato aphid (Myzus persicae Devonshire 1991) and the... [Pg.37]

Walker, C.H. (1978). Species differences in microsomal monooxygenase activities and their relationship to biological half lives. Drug Metabolism Reviews 7(2), 295-323. [Pg.373]

In addition, also nonheme iron catalysts containing BPMEN 1 and TPA 2 as ligands are known to activate hydrogen peroxide for the epoxidation of olefins (Scheme 1) [20-26]. More recently, especially Que and coworkers were able to improve the catalyst productivity to nearly quantitative conversion of the alkene by using an acetonitrile/acetic acid solution [27-29]. The carboxylic acid is required to increase the efficiency of the reaction and the epoxide/diol product ratio. The competitive dihydroxylation reaction suggested the participation of different active species in these oxidations (Scheme 2). [Pg.85]

This peptide itself has no selectivity for the two CCK receptors, CCK-A and B, which have so far been established to stimulate IP3/DAG while, like substance P, can close potassium channels to increase neuronal activity. The CCK-B receptor is thought to predominate in the CNS but species differences may make this interpretation difficult. It has a wide distribution in the CNS but is also found in the gut whereas the CCK-A receptor is more restricted but is found in the hypothalamus, hippocampus and in the brainstem. There are high levels of the natural peptide, CCK-8 in cortex, hippocampus, hypothalamus, ventral tegmentum, substantia nigra, brainstem and spinal cord. CCK is one of the most abundant peptides in the brain and CCK co-exists with dopamine, substance P, 5-HT and vasopressin. Interestingly, in the dopamine areas, CCK co-exists in the mesolimbic pathways but in the nigrostriatal projections, the peptide and... [Pg.260]

One can further elaborate a model to have a concrete form of /(ft), depending on which aspect of the adsorption one wants to describe more precisely, e.g., a more rigorous treatment of intermolecular interactions between adsorbed species, the activity instead of the concentration of adsorbates, the competitive adsorption of multiple species, or the difference in the size of the molecule between the solvent and the adsorbate. An extension that may be particularly pertinent to liquid interfaces has been made by Markin and Volkov, who allowed for the replacement of solvent molecules and adsorbate molecules based on the surface solution model [33,34]. Their isotherm, the amphiphilic isotherm takes the form... [Pg.123]

Species differences indicate that the AOS is not invariably operational prenatally, even though most peripheral and central neural units are in place and available for activation. Variability in the timing of maturation of the Organ-to-AOB linkage could well provide the necessary flexibility of response consistently associated with higher mammalian, and especially primate, neural systems. The onset of effective accessory... [Pg.91]

When applying any of these models it is crucial to understand the main transport mechanisms as well as the metabolic route and characterization of the activity of the transporter/enzyme involved. It is well recognized that the activities of carrier-mediated processes in Caco-2 cells are considerably lower than in vivo [20, 42, 48] therefore, it is crucial to extrapolate in vitro cell culture data to the in vivo situation with great care [18, 20, 42, 48], This is especially important when carrier-mediated processes are involved, as evidenced by a recent report which showed significant differences in gene expression levels for transporters, channels and metabolizing enzymes in Caco-2 cells than in human duodenum [48], If an animal model is used, then potential species differences must also be considered [18, 20, 45],... [Pg.510]

M., Sugiura, M., Species difference and characterization of intestinal esterase on the hydrolyzing activity of ester-type drugs, Jpn. J. Pharmacol. [Pg.529]


See other pages where Species differences activities is mentioned: [Pg.304]    [Pg.304]    [Pg.265]    [Pg.176]    [Pg.220]    [Pg.167]    [Pg.100]    [Pg.328]    [Pg.1149]    [Pg.96]    [Pg.122]    [Pg.54]    [Pg.118]    [Pg.134]    [Pg.179]    [Pg.169]    [Pg.117]    [Pg.570]    [Pg.307]    [Pg.201]    [Pg.353]    [Pg.367]    [Pg.430]    [Pg.330]    [Pg.176]    [Pg.182]    [Pg.182]    [Pg.70]    [Pg.45]    [Pg.736]    [Pg.35]    [Pg.96]    [Pg.155]    [Pg.128]    [Pg.74]    [Pg.180]    [Pg.296]    [Pg.448]    [Pg.511]   
See also in sourсe #XX -- [ Pg.34 , Pg.35 ]




SEARCH



Activated species

Active species

Active specy

Different species

Peroxisome proliferator activated receptor species difference

Species Differences in Detoxification Enzyme Activity

Species differences

© 2024 chempedia.info