Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxazole reactivity

This chapter is an attempt to present the important results of studies of the synthesis, reactivity, and physicochemical properties of this series of compounds. The subject was surveyed by Bulka (3) in 1963 and by Klayman and Gunther (4) in 1973. Unlike the oxazoles and thiazoles. there are few convenient preparative routes to the selenazoles. Furthermore, the selenium intermediates are difficult to synthesize and are often extremely toxic selenoamides tend to decompose rapidly depositing metallic selenium. This inconvenience can be alleviated by choice of suitable reaction conditions. Finally, the use of selenium compounds in preparative reactions is often complicated by the fragility of the cycle and the deposition of metallic selenium. [Pg.219]

Selenium heterocycles receive far less mention in the literature than do such homologs as oxazole, thiazole, or imidazole. In fact, preparative methods of selenium heterocycles are much more limited than for the other series, mainly because of manipulatory difficulties arising from the toxicity of selenium (hydrogen selenide is even more toxic) that can produce severe damage to the skin, lungs, kidneys, and eyes. Another source of difficulty is the reactivity of the heterocycle itself, which can easily undergo fission, depending on the reaction medium and the nature of the substituents. [Pg.275]

NMR data for 4-methyloxazole have been compared with those of 4-methylthiazole the data clearly show that the ring protons in each are shielded. In a comprehensive study of a range of oxazoles. Brown and Ghosh also reported NMR data but based a discussion of resonance stabilization on pK and UV spectral data (69JCS(B)270). The weak basicity of oxazole (pX a 0.8) relative to 1-methylimidazole (pK 7.44) and thiazole (pK 2.44) demonstrates that delocalization of the oxygen lone pair, which would have a base-strengthening effect on the nitrogen atom, is not extensive. It must be concluded that not only the experimental measurement but also the very definition of aromaticity in the azole series is as yet poorly quantified. Nevertheless, its importance in the interpretation of reactivity is enormous. [Pg.33]

Azoles having heteroatoms in the 1,3-orlentatlon are more reactive than those in which the arrangement is 1,2. However, the magnitude of the factor varies. Thus oxazole is 68 times more reactive than Isoxazole, whereas benzoxazole quaternlzes 26 times faster than does 1,2-benzisoxazole (78AHC(22)71). [Pg.51]

The 2-position in imidazoles, thiazoles and oxazoles is electron deficient, and substituents in the 2-position (332) generally show the same reactivity as a- or y-substituents on pyridines. 2-Substituents in azoliums of this type, including 1,3-dithiolyliums, are highly... [Pg.82]

Substituents in the 4-position of these compounds are also a to a multiply-bonded nitrogen atom, but because of bond fixation they are relatively little influenced by this nitrogen atom even when it is quaternized (333). This is similar to the situation for 3-substituents in isoquinolines, cf. Chapter 2.02. In general, substituents in the 4- and 5-positions of imidazoles, thiazoles and oxazoles show much the same reactivity of the same substituents on benzeneoid compounds (but see Section 4.02.3.9.1). [Pg.83]

Hetero-benzylic anionic reagents, derived from 2-alkyl-l,3-oxazoles, -1,3-thiazoles and -imidazoles and related compounds, are not covered in this section because these resemble metallo 1-azaenolates in their reactivity (Section D.l.3.5.). [Pg.187]

Considering the reactivity and the transformations of the oxazole nucleus, some examples of new reactivity were described as well as the application of known reactions to the oxazole nucleus. [Pg.300]

Palladium chemistry involving heterocycles has its unique characteristics stemming from the heterocycles inherently different structural and electronic properties in comparison to the corresponding carbocyclic aryl compounds. One example illustrating the striking difference in reactivity between a heteroarene and a carbocyclic arene is the heteroaryl Heck reaction (vide infra, see Section 1.4). We define a heteroaryl Heck reaction as an intermolecular or an intramolecular Heck reaction occurring onto a heteroaryl recipient. Intermolecular Heck reactions of carbocyclic arenes as the recipients are rare [12a-d], whereas heterocycles including thiophenes, furans, thiazoles, oxazoles, imidazoles, pyrroles and indoles, etc. are excellent substrates. For instance, the heteroaryl Heck reaction of 2-chloro-3,6-diethylpyrazine (1) and benzoxazole occurred at the C(2) position of benzoxazole to elaborate pyrazinylbenzoxazole 2 [12e]. [Pg.1]

The studies of the reactivity of saturated pyrrolo[2,l- )oxazoles are in general associated with the reactivity of Meyers chiral bicyclic lactams and their applications in asymmetric synthesis. [Pg.69]

The structural diversity (and complexity) of the products obtained by the MCR between tertiary isocyano amides, aldehydes, and amines could be increased to various heterocyclic scaffolds by combining the initial 2,4,5-tiisubstituted oxazole MCR with in situ intramolecular tandem processes (Fig. 17). Most tandem processes reported are based on the reactivity of the oxazole ring toward C=C or C=C bonds in hetero Diels-Alder reactions followed by ring opening reactions generating the rather complex heterocyclic products with high degrees of variation. [Pg.145]

The condensation of furo[3,2- ]pyrrole-type aldehydes 8g and 265-267 with hippuric acid was carried out in dry acetic anhydride catalyzed by potassium acetate as is shown in Scheme 26. The product methyl and ethyl 2-[( )-(5-oxo-2-phenyl-l,3-oxazol-5(4//)-ylidene)methyl]furo[3,2- ]pyrrol-5-carboxylates 268a-d were obtained. The course of the reaction was compared with the reaction of 5-arylated furan-2-carbaldehydes with hippuric acid. It was found that the carbonyl group attached at G-2 of the fused system 8 is less reactive than the carbonyl group in 5-arylated furan-2-carbaldehydes in this reaction <2004MOL11>. The configuration of the carbon-carbon double bond was determined using two-dimensional (2-D) NMR spectroscopic measurements and confirmed the (E) configuration of the products. [Pg.30]

Oxazoles resemble 1-substituted imidazoles in their positional reactivity order for electrophilic substitution, 5 > 4 > 2 [59LA(626)83, 59LA(626)92 74AHC(17)99 84MI29]. The compounds can be regarded as hybrids of... [Pg.362]

Although thiazoles structurally resemble imidazoles and oxazoles, they are less reactive with electrophiles. Calculated 7r-densities (48BSF1021) and localization energies (61CCC156) largely agree with experimental observations that positional specificities for electrophilic substitution are 5... [Pg.365]

Electrophilic substitutions Although oxazole, imidazole and thiazoles are not very reactive towards aromatic electrophilic substitution reactions, the presence of any electron-donating group on the ring can facilitate electrophilic substitution. For example, 2-methoxythiazole is more reactive... [Pg.157]

Nucleophilic aromatic substitutions 1,3-azoles are more reactive than pyrrole, furan or thiaphene towards nucleophilic attack. Some examples of nucleophilic aromatic substitutions of oxazole, imidazole and thiazoles and their derivatives are given below. In the reaction with imidazole, the presence of a nitro-group in the reactant can activate the reaction because the nitro-group can act as an electron acceptor. [Pg.158]

Oxazoles are mercurated in acetic acid the ring positions react 5 > 4 > 2 (74AHC( 17)99). Thiazoles react under the same conditions and show the same order of ring position reactivities. Isoxazoles can be easily mercurated in the 4-position with mercury (II) acetate (63AHC(2)365). 3-Arylsydnones are mercurated at the 4-position. [Pg.393]

Diels-Alder reactions of oxazoles afford useful syntheses of pyridines (Scheme 53) (74AHC( 17)99). A study of the effect of substituents on the Diels-Alder reactivity of oxazoles has indicated that rates decrease with the following substituents alkoxy > alkyl > acyl >> phenyl. The failure of 2- and 5-phenyl-substituted oxazoles to react with heterodienophiles is probably due to steric crowding. In certain cases, bicyclic adducts of type (359) have been isolated and even studied by an X-ray method (87BCJ432) they can also decompose to yield furans (Scheme 54). With benzyne, generated at 0°C from 1-aminobenzotriazole and lead tetraacetate under dilute conditions, oxazoles form cycloadducts (e.g. 360) in essentially quantitative yield (90JOC929). They can be handled at room temperature and are decomposed at elevated temperatures to isobenzofuran. [Pg.419]


See other pages where Oxazole reactivity is mentioned: [Pg.320]    [Pg.336]    [Pg.307]    [Pg.320]    [Pg.336]    [Pg.307]    [Pg.8]    [Pg.69]    [Pg.59]    [Pg.76]    [Pg.91]    [Pg.13]    [Pg.689]    [Pg.19]    [Pg.45]    [Pg.91]    [Pg.88]    [Pg.136]    [Pg.149]    [Pg.130]    [Pg.109]    [Pg.208]    [Pg.461]    [Pg.704]    [Pg.201]    [Pg.67]    [Pg.99]    [Pg.363]    [Pg.123]    [Pg.385]    [Pg.100]   
See also in sourсe #XX -- [ Pg.432 ]

See also in sourсe #XX -- [ Pg.232 , Pg.244 , Pg.245 , Pg.246 , Pg.247 , Pg.248 , Pg.249 ]




SEARCH



Oxazoles diene reactivity

© 2024 chempedia.info