Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide modeling

Figure 5.30 shows dependence of a fuel eomposition containing a mixture of hydrogen and carbon monoxide modeled by a 3-2-1 network the training data also... [Pg.124]

Carbon monoxide does not obey general copolymerization models. [Pg.375]

Oxidation Catalyst. An oxidation catalyst requires air to oxidize unbumed hydrocarbons and carbon monoxide. Air is provided with an engine driven air pump or with a pulse air device. Oxidation catalysts were used in 1975 through 1981 models but thereafter declined in popularity. Oxidation catalysts may be used in the future for lean bum engines and two-stroke engines. [Pg.491]

The Clean Air Act of 1990 establishes tighter pollution standards for emissions from automobiles and trucks. These standards will reduce tailpipe emissions of hydrocarbons, carbon monoxide, and nitrogen oxides on a phased-in basis beginning in model year 1994. Automobile manufacturers will also be required to reduce vehicle emissions resulting from the evaporation of gasoline during refueling. [Pg.399]

The rollback approach assumes that emissions and atmospheric concentrations are linearly related, i.e., that a given percentage reduction in emission will result in a similar percentage reduction in atmospheric concentrations. This is most likely a valid assumption for a nonreactive gas such as carbon monoxide, whose principal source is the automobile. The model is... [Pg.416]

CALINE3 (California Line Source Model) is a line source dispersion model tliat can be used to predict carbon monoxide concentrations near liighways and arterial streets given traffic emissions, site geometry, and meteorology. [Pg.384]

The FTS mechanism could be considered a simple polymerization reaction, the monomer being a Ci species derived from carbon monoxide. This polymerization follows an Anderson-Schulz-Flory distribution of molecular weights. This distribution gives a linear plot of the logarithm of yield of product (in moles) versus carbon number. Under the assumptions of this model, the entire product distribution is determined by one parameter, a, the probability of the addition of a carbon atom to a chain (Figure 4-7). ... [Pg.126]

In a later publication, Kolbel et al. (K16) have proposed a less empirical model based on the assumption that the rate-determining steps for a slurry process are the catalytic reaction and the mass transfer across the gas-liquid interface. When used for the hydrogenation of carbon monoxide to methane, the process rate is expressed as moles carbon monoxide consumed per hour and per cubic meter of slurry ... [Pg.84]

Kolbel et al. (K16) examined the conversion of carbon monoxide and hydrogen to methane catalyzed by a nickel-magnesium oxide catalyst suspended in a paraffinic hydrocarbon, as well as the oxidation of carbon monoxide catalyzed by a manganese-cupric oxide catalyst suspended in a silicone oil. The results are interpreted in terms of the theoretical model referred to in Section IV,B, in which gas-liquid mass transfer and chemical reaction are assumed to be rate-determining process steps. Conversion data for technical and pilot-scale reactors are also presented. [Pg.120]

Although the first mechanism is intuitively, and for reasons of simplicity, preferred to the second one, there is no experimental evidence for excluding the latter. Theoretical evidence for preferring the former mechanism stems from a study by Jansen and Ros (1969), who performed non-empirical calculations on several configurations of a model system, viz. protonated carbon monoxide. They found that the linear +... [Pg.50]

In low oxidation states, transition metals possess filled or partly filled d shells. The Dewar-Chatt-Duncanson model envisages some of that electron density in (local) d (e.g. d., d y) orbitals being donated into the empty n orbitals of the carbon monoxide ... [Pg.122]

We have undertaken a series of experiments Involving thin film models of such powdered transition metal catalysts (13,14). In this paper we present a brief review of the results we have obtained to date Involving platinum and rhodium deposited on thin films of tltanla, the latter prepared by oxidation of a tltanliua single crystal. These systems are prepared and characterized under well-controlled conditions. We have used thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES) and static secondary Ion mass spectrometry (SSIMS). Our results Illustrate the power of SSIMS In understanding the processes that take place during thermal treatment of these thin films. Thermal desorption spectroscopy Is used to characterize the adsorption and desorption of small molecules, In particular, carbon monoxide. AES confirms the SSIMS results and was used to verify the surface cleanliness of the films as they were prepared. [Pg.81]

PEMFC)/direct methanol fuel cell (DMFC) cathode limit the available sites for reduction of molecular oxygen. Alternatively, at the anode of a PEMFC or DMFC, the oxidation of water is necessary to produce hydroxyl or oxygen species that participate in oxidation of strongly bound carbon monoxide species. Taylor and co-workers [Taylor et ah, 2007b] have recently reported on a systematic study that examined the potential dependence of water redox reactions over a series of different metal electrode surfaces. For comparison purposes, we will start with a brief discussion of electronic structure studies of water activity with consideration of UHV model systems. [Pg.106]

In this chapter, we have summarized (recent) progress in the mechanistic understanding of the oxidation of carbon monoxide, formic acid, methanol, and ethanol on transition metal (primarily Pt) electrodes. We have emphasized the surface science approach employing well-defined electrode surfaces, i.e., single crystals, in combination with surface-sensitive techniques (FTIR and online OEMS), kinetic modeling and first-principles DFT calculations. [Pg.197]


See other pages where Carbon monoxide modeling is mentioned: [Pg.260]    [Pg.260]    [Pg.228]    [Pg.35]    [Pg.57]    [Pg.377]    [Pg.4]    [Pg.332]    [Pg.399]    [Pg.423]    [Pg.124]    [Pg.449]    [Pg.794]    [Pg.592]    [Pg.59]    [Pg.71]    [Pg.602]    [Pg.131]    [Pg.138]    [Pg.13]    [Pg.80]    [Pg.152]    [Pg.118]    [Pg.35]    [Pg.253]    [Pg.87]    [Pg.130]    [Pg.133]    [Pg.135]    [Pg.143]    [Pg.196]    [Pg.1292]    [Pg.349]   


SEARCH



Carbonic model

© 2024 chempedia.info