Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium water chain

FIGURE 28. (a) Layer type of network formed by sodium oetahedra and Anderson anions, (b) Sodium water chain supported by the Anderson anions. (Represented with permission ref. 54.)... [Pg.90]

Method 2. Place a 3 0 g. sample of the mixture of amines in a flask, add 6g. (4-5 ml.) of benzenesulphonyl chloride (or 6 g. of p-toluenesulphonyl chloride) and 100 ml. of a 5 per cent, solution of sodium hydroxide. Stopper the flask and shake vigorously until the odour of the acid chloride has disappeared open the flask occasionally to release the pressure developed by the heat of the reaction. AUow the mixture to cool, and dissolve any insoluble material in 60-75 ml. of ether. If a solid insoluble in both the aqueous and ether layer appears at this point (it is probably the sparingly soluble salt of a primary amine, e.g., a long chain compound of the type CjH5(CH2) NHj), add 25 ml. of water and shake if it does not dissolve, filter it off. Separate the ether and aqueous layers. The ether layer will contain the unchanged tertiary amine and the sulphonamide of the secondary amine. Acidify the alkaline aqueous layer with dilute hydrochloric acid, filter off the sulphonamide of the primary amine, and recrystaUise it from dilute alcohol. Extract the ether layer with sufficient 5 per cent, hydrochloric acid to remove all the tertiary amine present. Evaporate the ether to obtain the sulphonamide of the secondary amine recrystaUise it from alcohol or dilute alcohol. FinaUy, render the hydrochloric acid extract alkaline by the addition of dilute sodium hydroxide solution, and isolate the tertiary amine. [Pg.651]

Group I. This includes the lower members of the various homologous series (4-5 atoms in a normal chain) that contain oxygen and/or nitrogen in their structures they are soluble iu water because of their low carbon content. If the compound is soluble in both water and ether, it would also be soluble in other solvents so that further solubility tests are generally unnecessary the test with sodium bicarbonate solution should, however, be performed (see Section XI,6). [Pg.1053]

Carboxylate groups are hydrophilic ( water loving ) and tend to confer water sol ubility on species that contain them Long hydrocarbon chains are lipophilic ( fat loving ) and tend to associate with other hydrocarbon chains Sodium stearate is an example of an amphiphilic substance both hydrophilic and lipophilic groups occur within the same molecule... [Pg.800]

Detergents are substances including soaps that cleanse by micellar action A large number of synthetic detergents are known One example is sodium lauryl sulfate Sodium lauryl sulfate has a long hydrocarbon chain terminating m a polar sulfate ion and forms soap like micelles m water... [Pg.800]

The kinetics of vinyl acetate emulsion polymeriza tion in the presence of alkyl phenyl ethoxylate surfactants of various chain lengths indicate that part of the emulsion polymerization occurs in the aqueous phase and part in the particles (115). A study of the emulsion polymerization of vinyl acetate in the presence of sodium lauryl sulfate reveals that a water-soluble poly(vinyl acetate)—sodium dodecyl sulfate polyelectrolyte complex forms, and that latex stabihty, polymer hydrolysis, and molecular weight are controlled by this phenomenon (116). [Pg.466]

Reactions of the Side Chain. Benzyl chloride is hydrolyzed slowly by boiling water and more rapidly at elevated temperature and pressure in the presence of alkaHes (11). Reaction with aqueous sodium cyanide, preferably in the presence of a quaternary ammonium chloride, produces phenylacetonitrile [140-29-4] in high yield (12). The presence of a lower molecular-weight alcohol gives faster rates and higher yields. In the presence of suitable catalysts benzyl chloride reacts with carbon monoxide to produce phenylacetic acid [103-82-2] (13—15). With different catalyst systems in the presence of calcium hydroxide, double carbonylation to phenylpymvic acid [156-06-9] occurs (16). Benzyl esters are formed by heating benzyl chloride with the sodium salts of acids benzyl ethers by reaction with sodium alkoxides. The ease of ether formation is improved by the use of phase-transfer catalysts (17) (see Catalysis, phase-thansfer). [Pg.59]

The side-chain chlorine contents of benzyl chloride, benzal chloride, and benzotrichlorides are determined by hydrolysis with methanolic sodium hydroxide followed by titration with silver nitrate. Total chlorine determination, including ring chlorine, is made by standard combustion methods (55). Several procedures for the gas chromatographic analysis of chlorotoluene mixtures have been described (56,57). Proton and nuclear magnetic resonance shifts, characteristic iafrared absorption bands, and principal mass spectral peaks have been summarized including sources of reference spectra (58). Procedures for measuring trace benzyl chloride ia air (59) and ia water (60) have been described. [Pg.61]

The primary Cr—O bonded species is cbromium (VT) oxide, CrO, which is better known as chromic acid [1115-74-5], the commercial and common name. This compound also has the aliases chromic trioxide and chromic acid anhydride and shows some similarity to SO. The crystals consist of infinite chains of vertex-shared CrO tetrahedra and are obtained as an orange-red precipitate from the addition of sulfuric acid to the potassium or sodium dichromate(VI). Completely dry CrO is very dark red to red purple, but the compound is deflquescent and even traces of water give the normal mby red color. Cbromium (VT) oxide is a very powerful oxidi2er and contact with oxidi2able organic compounds may cause fires or explosions. [Pg.136]

In a study of the adsorption of soap and several synthetic surfactants on a variety of textile fibers, it was found that cotton and nylon adsorbed less surfactant than wool under comparable conditions (59). Among the various surfactants, the cationic types were adsorbed to the greatest extent, whereas nonionic types were adsorbed least. The adsorption of nonionic surfactants decreased with increasing length of the polyoxyethylene chain. When soaps were adsorbed, the fatty acid and the aLkaU behaved more or less independently just as they did when adsorbed on carbon. The adsorption of sodium oleate by cotton has been shown independently to result in the deposition of acid soap (a composition intermediate between the free fatty acid and the sodium salt), if no heavy-metal ions are present in the system (60). In hard water, the adsorbate has large proportions of lime soap. [Pg.532]

Fiber components are the principal energy source for colonic bacteria with a further contribution from digestive tract mucosal polysaccharides. Rate of fermentation varies with the chemical nature of the fiber components. Short-chain fatty acids generated by bacterial action are partiaUy absorbed through the colon waU and provide a supplementary energy source to the host. Therefore, dietary fiber is partiaUy caloric. The short-chain fatty acids also promote reabsorption of sodium and water from the colon and stimulate colonic blood flow and pancreatic secretions. Butyrate has added health benefits. Butyric acid is the preferred energy source for the colonocytes and has been shown to promote normal colonic epitheUal ceU differentiation. Butyric acid may inhibit colonic polyps and tumors. The relationships of intestinal microflora to health and disease have been reviewed (10). [Pg.70]


See other pages where Sodium water chain is mentioned: [Pg.88]    [Pg.90]    [Pg.88]    [Pg.90]    [Pg.35]    [Pg.173]    [Pg.115]    [Pg.1235]    [Pg.131]    [Pg.548]    [Pg.713]    [Pg.309]    [Pg.488]    [Pg.2589]    [Pg.246]    [Pg.445]    [Pg.672]    [Pg.800]    [Pg.234]    [Pg.246]    [Pg.397]    [Pg.427]    [Pg.436]    [Pg.241]    [Pg.192]    [Pg.343]    [Pg.343]    [Pg.283]    [Pg.363]    [Pg.536]    [Pg.378]    [Pg.151]    [Pg.158]    [Pg.341]    [Pg.245]    [Pg.134]    [Pg.271]    [Pg.311]    [Pg.1424]    [Pg.66]   
See also in sourсe #XX -- [ Pg.88 , Pg.90 ]




SEARCH



Sodium Water

© 2024 chempedia.info