Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium carbonate, 166 formation

Qualitative examples abound. Perfect crystals of sodium carbonate, sulfate, or phosphate may be kept for years without efflorescing, although if scratched, they begin to do so immediately. Too strongly heated or burned lime or plaster of Paris takes up the first traces of water only with difficulty. Reactions of this type tend to be autocat-alytic. The initial rate is slow, due to the absence of the necessary linear interface, but the rate accelerates as more and more product is formed. See Refs. 147-153 for other examples. Ruckenstein [154] has discussed a kinetic model based on nucleation theory. There is certainly evidence that patches of product may be present, as in the oxidation of Mo(lOO) surfaces [155], and that surface defects are important [156]. There may be catalysis thus reaction VII-27 is catalyzed by water vapor [157]. A topotactic reaction is one where the product or products retain the external crystalline shape of the reactant crystal [158]. More often, however, there is a complicated morphology with pitting, cracking, and pore formation, as with calcium carbonate [159]. [Pg.282]

Solubility in sodium carbonate solution. Note that phenols, when soluble in water, will also dissolve in NagCOg solution, but usually loithout evolution of CO, i.e., without the formation of a sodium derivative. This reaction can therefore be used to distinguish between carboxylic adds and most phenols. See Section 5, p. 330. [Pg.347]

Anion-exchange resins contain a basic radical, such as —NH and =NH, and are prepared by the condensation of formaldehj de with amines such as m-phenylenediainine and urea. These resins can absorb acids by the formation of salts, —NH3CI and =NHjCl, and are regenerated by treatment with sodium hydroxide or sodium carbonate. [Pg.1020]

The oxidant preheater, positioned in the convective section and designed to preheat the oxygen-enriched air for the MHD combustor to 922 K, is located after the finishing superheat and reheat sections. Seed is removed from the stack gas by electrostatic precipitation before the gas is emitted to the atmosphere. The recovered seed is recycled by use of the formate process. Alkali carbonates ate separated from potassium sulfate before conversion of potassium sulfate to potassium formate. Sodium carbonate and potassium carbonate are further separated to avoid buildup of sodium in the system by recycling of seed. The slag and fly-ash removed from the HRSR system is assumed to contain 15—17% of potassium as K2O, dissolved in ash and not recoverable. [Pg.425]

Phosgene addition is continued until all the phenoHc groups are converted to carbonate functionahties. Some hydrolysis of phosgene to sodium carbonate occurs incidentally. When the reaction is complete, the methylene chloride solution of polymer is washed first with acid to remove residual base and amine, then with water. To complete the process, the aqueous sodium chloride stream can be reclaimed in a chlor-alkah plant, ultimately regenerating phosgene. Many variations of this polycarbonate process have been patented, including use of many different types of catalysts, continuous or semicontinuous processes, methods which rely on formation of bischloroformate oligomers followed by polycondensation, etc. [Pg.283]

Typical specifications of the powder are as follows sodium methylate, 97.5% sodium hydroxide, 0.5% sodium carbonate, 0.4% sodium formate, 0.3% and free methanol, 0.5%. [Pg.26]

There is Htde evidence of the direct formation of sodium carbide from the elements (29,30), but sodium and graphite form lamellar intercalation compounds (16,31—33). At 500—700°C, sodium and sodium carbonate produce the carbide, Na2C2 above 700°C, free carbon is also formed (34). Sodium reacts with carbon monoxide to give sodium carbide (34), and with acetylene to give sodium acetyHde, NaHC2, and sodium carbide (disodium acetyHde), Na2C2 (see Carbides) (8). [Pg.163]

Tungsten is usually identified by atomic spectroscopy. Using optical emission spectroscopy, tungsten in ores can be detected at concentrations of 0.05—0.1%, whereas x-ray spectroscopy detects 0.5—1.0%. ScheeHte in rock formations can be identified by its luminescence under ultraviolet excitation. In a wet-chemical identification method, the ore is fired with sodium carbonate and then treated with hydrochloric acid addition of 2inc, aluminum, or tin produces a beautiful blue color if tungsten is present. [Pg.284]

The pH is measured colorimetricaHy with phenol red indicator. High FAC causes lower pH rea dings due to bleaching of the indicator and resultant HCl formation. The pH of pool water is readily controlled with inexpensive chemicals. Hydrochloric acid solution or sodium bisulfate lower it, whereas sodium carbonate raises it. Since acid addition neutralizes a portion of the alkalinity, this must be replenished if the alkalinity drops below the minimum. By contrast, pH adjustment with carbon dioxide does not affect alkalinity. [Pg.299]

No reaction takes place below 500°C when sodium cyanide and sodium hydroxide are heated in the absence of water and oxygen. Above 500°C, sodium carbonate, sodium cyanamide [19981-17-0] sodium oxide, and hydrogen are produced. In the presence of small amounts of water at 500°C decomposition occurs with the formation of ammonia and sodium formate, and the latter is converted into sodium carbonate and hydrogen by the caustic soda. In the presence of excess oxygen, sodium carbonate, nitrogen, and water are produced (53). [Pg.382]

If the hydroxy-acid is heated with hydrobromic acid, it is converted into l-methyl-l-bromocyclohexane-4-carboxylic acid, and this is decomposed by boiling with sodium carbonate with loss of hydrogen bromide and with formation of 1-methyl-A cyclohexene-4-carboxyhc acid—... [Pg.64]

When the reaction is complete the oil is distilled, or more nsually decanted off, and the benzaldehyde thoroughly agitated with fifteen times its weight of bisulphite of soda. This results in the formation of the solid sodium bisulphite compound. This is washed with alcohol and then decomposed by a solution of sodium carbonate, and finally the benzaldehyde is distilled in a current of steam. [Pg.192]

A solution of 54.1 grams of 1-formyl-4-(3 -chloropropyl)-piperazine, [prepared by formylat-ing 1-(3 -hydroxypropyl)-piperazine by refluxing in an excess of methyl formate, purifying the 1-formyl-4-(3 -hydroxypropyl)-piperazine by vacuum distillation, reacting this compound with an excess of thionyl chloride at reflux and isolating the desired 1-formyl-4-(3 -chloropropyl)-piperazine by neutralization with sodium carbonate solution followed by distillation] in 200 ml of toluene is added. The reflux period Is continued for 4 hours. [Pg.682]

Severe attack frequently occurs at a water-line, which in practice can range from structural steel partly immersed in a natural water to a lacquered tin can used for containing emulsion paint. This can be illustrated by adding increeising amounts of sodium carbonate to a sodium chloride solution in which a steel plate is partly immersed (Fig. 1.48c, d and e). With increase in concentration of the inhibitor, attack decreases and becomes confined to the water-line. The attack at the water-line is intense and is characterised by a triangular pasty mass of corrosion products bounded on the upper surface by a dark-brown membrane that follows the contour of the water-line. The mechanism of water-line attack is not clear, but it is likely that the membrane of corrosion products results in the formation of an occluded cell, in which the anolyte and catholyte are prevented from mixing. These occluded cells are discussed in more detail subsequently. [Pg.160]

Tin when made anodic shows passive behaviour as surface films are built up but slow dissolution of tin may persist in some solutions and transpassive dissolution may occur in strongly alkaline solutions. Some details have been published for phosphoric acid with readily obtained passivity, and sulphuric acid " for which activity is more persistent, but most interest has been shown in the effects in alkaline solutions. For galvanostatic polarisation in sodium borate and in sodium carbonate solutions at 1 x 10" -50 X 10" A/cm, simultaneous dissolution of tin as stannite ions and formation of a layer of SnO occurs until a critical potential is reached, at which a different oxide or hydroxide (possibly SnOj) is formed and dissolution ceases. Finally oxygen is evolved from the passive metal. The nature of the surface films formed in KOH solutions up to 7 m and other alkaline solutions has also been examined. [Pg.806]

Sodium bicarbonate, 112-113 Sodium carbonate, 61 Sodium chloride 44q common ion effect and, 439 electrolysis, 499 formation, 3 structure, 36 Sodium chlorine, 4 Sodium hydroxide, 61,84,441 Sodium hypochlorite, 369-370 Sodium stearate, 595 Sodium vapor lamps, 135 Solids... [Pg.696]


See other pages where Sodium carbonate, 166 formation is mentioned: [Pg.513]    [Pg.513]    [Pg.513]    [Pg.95]    [Pg.198]    [Pg.360]    [Pg.363]    [Pg.369]    [Pg.485]    [Pg.149]    [Pg.174]    [Pg.524]    [Pg.505]    [Pg.376]    [Pg.504]    [Pg.74]    [Pg.345]    [Pg.208]    [Pg.216]    [Pg.392]    [Pg.334]    [Pg.382]    [Pg.528]    [Pg.157]    [Pg.157]    [Pg.76]    [Pg.271]    [Pg.677]    [Pg.136]    [Pg.281]    [Pg.386]    [Pg.84]    [Pg.196]    [Pg.313]    [Pg.796]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Sodium carbonate

Sodium formate

© 2024 chempedia.info