Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Borohydride, sodium preparation

In this preparation, phenyi-2-nitropropene is reduced to phenyl-2-nitropropane with sodium borohydride in methanol, followed by hydrolysis of the nitro group with hydrogen peroxide and potassium carbonate, a variety of the Nef reaction. The preparation is a one-pot synthesis, without isolation of the intermediate. [Pg.165]

The structure of the bicychc monoterpene borneol is shown in Figure 26 7 Isoborneol a stereoisomer of borneol can be prepared in the labora tory by a two step sequence In the first step borneol is oxidized to camphor by treatment with chromic acid In the second step camphor is reduced with sodium borohydride to a mixture of 85% isoborneol and 15% borneol On the basis of these transformations deduce structural formulas for isoborneol and camphor... [Pg.1090]

Lynestrenol is the des-3-oxo derivative of norethindrone (28). It has been prepared through a similar synthetic pathway as aHylestrenol (37) (52), ie, addition of potassium acetyUde, rather than aHyl magnesium bromide, affords lynestrenol (73). Lynestrenol is also available from norethindrone (28). Reduction of the 3-keto group is accompHshed by treating norethindrone (28) with sodium borohydride in the presence of trifluoro- or trichloroacetic acid... [Pg.216]

Preparation. Sodium borohydride is manufactured from sodium hydride and trimethyl borate ia a mineral oil medium at about 275°C (26),... [Pg.303]

Other Borohydrides. Potassium borohydride was formerly used in color reversal development of photographic film and was preferred over sodium borohydride because of its much lower hygroscopicity. Because other borohydrides are made from sodium borohydride, they are correspondingly more expensive. Generally their reducing properties are not sufficiently different to warrant the added cost. Zinc borohydride [17611-70-0] Zn(BH 2> however, has found many appHcations in stereoselective reductions. It is less basic than NaBH, but is not commercially available owing to poor thermal stabihty. It is usually prepared on site in an ether solvent. Zinc borohydride was initially appHed to stereoselective ketone reductions, especially in prostaglandin syntheses (36), and later to aldehydes, acid haHdes, and esters (37). [Pg.304]

Higher nitroalkanes are prepared from lower primary nitroalkanes by a one-pot synthesis (69). Successive condensations with aldehydes and acylating agents are followed by reduction with sodium borohydride. Overall conversions in the 75—80% range are reported. [Pg.101]

The chain-growth catalyst is prepared by dissolving two moles of nickel chloride per mole of bidentate ligand (BDL) (diphenylphosphinobenzoic acid in 1,4-butanediol). The mixture is pressurized with ethylene to 8.8 MPa (87 atm) at 40°C. Boron hydride, probably in the form of sodium borohydride, is added at a molar ratio of two borohydrides per one atom of nickel. The nickel concentration is 0.001—0.005%. The 1,4-butanediol is used to solvent-extract the nickel catalyst after the reaction. [Pg.439]

AletalHydrides. Metal hydrides can sometimes be used to prepare amines by reduction of various functional groups, but they are seldom the preferred method. Most metal hydrides do not reduce nitro compounds at all (64), although aUphatic nitro compounds can be reduced to amines with lithium aluminum hydride. When aromatic amines are reduced with this reagent, a2o compounds are produced. Nitriles, on the other hand, can be reduced to amines with lithium aluminum hydride or sodium borohydride under certain conditions. Other functional groups which can be reduced to amines using metal hydrides include amides, oximes, isocyanates, isothiocyanates, and a2ides (64). [Pg.263]

Since ivermectin (= 22,23-dihydroavermectin B ) is obtained by catalytic reduction of avermectin B, the same procedure using tritium gas convenientiy affords tritiated ivermectin (22,23- [JT]-22,23-dihydroavermectin B ). The preparation of a tritiated derivative containing a 22,23-double bond starts with the readily available 5-ketone, which is reduced with [JT]-sodium borohydride stereospecificaHy to a 5- [JT]-derivative (40). Carbon-14 labeled avermectins can be obtained by a biosynthetic process using sodium (l- C)propionate as labeled precursor (48). [Pg.284]

Sodium Tetrahydroborate, Na[BH ]. This air-stable white powder, commonly referred to as sodium borohydride, is the most widely commercialized boron hydride material. It is used in a variety of industrial processes including bleaching of paper pulp and clays, preparation and purification of organic chemicals and pharmaceuticals, textile dye reduction, recovery of valuable metals, wastewater treatment, and production of dithionite compounds. Sodium borohydride is produced in the United States by Morton International, Inc., the Alfa Division of Johnson Matthey, Inc., and Covan Limited, with Morton International supplying about 75% of market. More than six million pounds of this material suppHed as powder, pellets, and aqueous solution, were produced in 1990. [Pg.253]

Synthesis. The parent compound, bora2iae [6569-51-3] is best prepared by a two-step process involving formation of B-trichlorobora2iQe followed by reduction with sodium borohydride. These reactions have been studied ia some detail (96). [Pg.265]

Hydroxymethylferrocene has been made by condensing ferrocene with N-methylformanilide to give ferrocenecarboxalde-hyde, and reducing the latter with lithium aluminum hydride, sodium borohydride, or formaldehyde and alkali. The present procedure is based on the method of Lindsay and Hauser. A similar procedure has been used to convert gramine methiodide to 3-hydroxymethylindole, and the method could probably be used to prepare other hydroxymethyl aromatic compounds. [Pg.53]

Timko and Cram were the first to prepare true crown ethers containing the furanyl subcyclic unit ° . Destructive distillation of sucrose yielded 2-hydroxymethyl-5-formyl-furan 7 in 41% yield. This could be reduced to the corresponding diol in 91% yield by treatment with sodium borohydride. Reaction of the diol with tetraethylene glycol dito-sylate, and potassium t-butoxide in THE solution afforded the crown in 36% yield. The approach is illustrated below as Eq. (3.26). [Pg.32]

Macrocycles have been prepared by formation of macrocyclic imines as well as by using variations of the Williamson ether synthesis ". Typically, a diamine or dialdehyde is treated with its counterpart to yield the Schiff s base. The saturated macrocycle may then be obtained by simple reduction, using sodium borohydride, for example. The cyclization may be metal-ion templated. In the special case of the all-nitrogen macrd-cycle, 15, the condensation of diamine with glyoxal shown in Eq. (4.14), was unsuccess-ful ... [Pg.164]

Preparation of the prototype starts with the radical side I liain bromination of dichloroacetophenone to give the bromoketone (23). The carbonyl group is then reduced by means of sodium borohydride displacement of halogen by means of isopropylamine... [Pg.65]

A phenyl ethanol amine in which the nitrogen is alkylated by a long chain alphatic group departs in activity from the prototypes. This agent, suloctidil (43) is described as a peripheral vasodilator endowed with platelet antiaggregatory activity. As with the more classical compounds, preparation proceeds through bromination of the substituted propiophen-one ( ) and displacement of halogen with octyl amine. Reduction, in this case by means of sodium borohydride affords suloctidil (43). ... [Pg.26]

D) Preparation of 2-(1-Hydroxyethyi)-3-Methyi-5-(2-Oxo-2,5-Dihydro-4-Furyi)Benzo[b] Furan (3574 CB) 13,2 grams of compound 3556 CB of which the preparation is described in (C) are treated successively with 66 ml of methylene chloride, 27 ml of methanol and, with stirring, 1.6 grams of sodium borohydride added in stages. The reaciton takes 1 hour. The mixture is poured into water acidified with a sufficient amount of acetic acid, the solvents are stripped under vacuum, the crystalline product removed, washed with water, and recrystallized from ethyl acetate. Yield 90%. MP <=158°C. [Pg.142]

Stage 4 Preparation of 1-l2-Phenyi-2-Methoxyl -Ethyi-4-[3-Phenyl-3-Hydroxypropyl] -Piperazine Dihydrochioride - In a double-neck flask equipped with a thermometer and a mechanical stirrer, there is placed in suspension in 800 ml of methanol, 233 grams of 1-[2-phenyl-2-methoxy]-ethyl-4-[2-benzoyl-ethyl]-piperazine dihydrochioride (0.55 mol). It is cooled to approximately 5°C, and 46 grams of NaOH pellets dissolved in 80 ml of HjO are added. When the temperature is about 5°C, one addition of 29,2 grams of sodium borohydride in 40 ml HjO is made. The ice-bath is then removed and stirring continued at ambient temperature for 6 hours. [Pg.567]

A solution of N-(2-aminobenzvl)-1-phenyl-2-metKylaminoethanol-1 was prepared by the reaction of a-bromo-acetophenone and (2-nitrobenzyl)methylamine, followed by hydrogenation of the nitro group by means of nickei on diatomaceous earth at room temperature and reduction of the CO group by means of sodium borohydride. The intermediate thus produced was dissolved in 100 ml of methylene chloride and introduced dropwise into 125 ml of sulfuric acid at 10° to 15°C. After a short standing, the reaction mixture was poured onto ice and rendered alkaline by means of a sodium hydroxide solution. Dy extraction with ether, there was obtained 1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-amino-iso-quinoline. The base is reacted with maleic acid to give the maleate melting point of the maleate 199° to 201°C (from ethanol). [Pg.1091]


See other pages where Borohydride, sodium preparation is mentioned: [Pg.204]    [Pg.160]    [Pg.72]    [Pg.103]    [Pg.71]    [Pg.204]    [Pg.160]    [Pg.72]    [Pg.103]    [Pg.71]    [Pg.65]    [Pg.2902]    [Pg.22]    [Pg.311]    [Pg.278]    [Pg.300]    [Pg.309]    [Pg.293]    [Pg.161]    [Pg.49]    [Pg.69]    [Pg.206]    [Pg.283]    [Pg.243]    [Pg.265]    [Pg.28]    [Pg.25]    [Pg.30]    [Pg.62]    [Pg.260]    [Pg.1166]    [Pg.99]    [Pg.200]    [Pg.279]    [Pg.1008]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Borohydride preparation

Sodium preparation

© 2024 chempedia.info