Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium borohydride carboxylic acids

An excellent, broad review of the last 60 years of hydride reductions has been published,235 and the use of selectrides, Li and K tri-.v-butylborohydridcs or trisiamylborohydrides, has also been reviewed.236 A review of sodium borohydride-carboxylic acid as a reagent with novel selectivity in reductions has been written in particular, this reagent is useful for the A -alkylation of primary and secondary amines, through a sequence that is believed to involve sequential carboxylic acid to aldehyde reduction followed by reductive animation.237... [Pg.204]

G. W. Gribble, J. M. Jasinski, J. T. Pellicone, and J. A. Panetta. Reactions of sodium borohydride in acidic media VIII. A-alkylation of aliphatic secondary amines with carboxylic acids. Synthesis, 1978, 766. [Pg.58]

Sodium borohydride is not nearly as potent a hydride donor as lithium aluminum hydride and does not reduce carboxylic acids... [Pg.632]

Isoquinoline can be reduced quantitatively over platinum in acidic media to a mixture of i j -decahydroisoquinoline [2744-08-3] and /n j -decahydroisoquinoline [2744-09-4] (32). Hydrogenation with platinum oxide in strong acid, but under mild conditions, selectively reduces the benzene ring and leads to a 90% yield of 5,6,7,8-tetrahydroisoquinoline [36556-06-6] (32,33). Sodium hydride, in dipolar aprotic solvents like hexamethylphosphoric triamide, reduces isoquinoline in quantitative yield to the sodium adduct [81045-34-3] (25) (152). The adduct reacts with acid chlorides or anhydrides to give N-acyl derivatives which are converted to 4-substituted 1,2-dihydroisoquinolines. Sodium borohydride and carboxylic acids combine to provide a one-step reduction—alkylation (35). Sodium cyanoborohydride reduces isoquinoline under similar conditions without N-alkylation to give... [Pg.396]

The synthesis of key intermediate 12, in optically active form, commences with the resolution of racemic trans-2,3-epoxybutyric acid (27), a substance readily obtained by epoxidation of crotonic acid (26) (see Scheme 5). Treatment of racemic 27 with enantio-merically pure (S)-(-)-1 -a-napthylethylamine affords a 1 1 mixture of diastereomeric ammonium salts which can be resolved by recrystallization from absolute ethanol. Acidification of the resolved diastereomeric ammonium salts with methanesulfonic acid and extraction furnishes both epoxy acid enantiomers in eantiomerically pure form. Because the optical rotation and absolute configuration of one of the antipodes was known, the identity of enantiomerically pure epoxy acid, (+)-27, with the absolute configuration required for a synthesis of erythronolide B, could be confirmed. Sequential treatment of (+)-27 with ethyl chloroformate, excess sodium boro-hydride, and 2-methoxypropene with a trace of phosphorous oxychloride affords protected intermediate 28 in an overall yield of 76%. The action of ethyl chloroformate on carboxylic acid (+)-27 affords a mixed carbonic anhydride which is subsequently reduced by sodium borohydride to a primary alcohol. Protection of the primary hydroxyl group in the form of a mixed ketal is achieved easily with 2-methoxypropene and a catalytic amount of phosphorous oxychloride. [Pg.176]

A cobalt complex containing this type of ligand is effective in the sodium borohydride-mediated enantioselective reduction of a variety of a,/ -unsaturated carboxylates. As can be seen from Scheme 6-8, in the presence of a catalytic amount of a complex formed in situ from C0CI2 and chiral ligand 11, reduction proceeds smoothly, giving product with up to 96% ee. The chiral ligand can easily be recovered by treating the reaction mixture with acetic acid. [Pg.342]

Cyclobutyl-cis-4-trans-5-dimethyl- 1,3-dioxolane, by reaction of erythro-3-methane-sulfonyloxy-2-butyl cyclo-butanecarboxylate with sodium borohydride, 51, 12 hydrolysis to cyclobutane-carboxaldehyde, 51, 13 3,5—CYCLOHEXADIENE—1, 2-DI CARBOXYLIC ACID, 50, 50 A1 a-Cyclohexaneacetaldehyde, 53, 104... [Pg.57]

The applications of sodium acyloxyborohydrides, formed from sodium borohydrides in carboxylic acid media, are reviewed. ° Useful reviews of the stereoselective reduction of endocyclic C=N compounds and of the enantioselective reduction of ketones have appeared. ... [Pg.245]

Sodium borohydride does not reduce the free carboxylic group, but borane prepared from sodium borohydride and boron trifluoride etherate in tetrahydrofuran converts aliphatic acids to alcohols at 0-25° in 89-100% yields... [Pg.137]

Reduction of aromatic carboxylic acids to alcohols can be achieved by hydrides and complex hydrides, e.g. lithium aluminum hydride 968], sodium aluminum hydride [55] and sodium bis 2-methoxyethoxy)aluminum hydride [544, 969, 970], and with borane (diborane) [976] prepared from sodium borohydride and boron trifluoride etherate [971, 977] or aluminum chloride [755, 975] in diglyme. Sodium borohydride alone does not reduce free carboxylic acids. Anthranilic acid was reduced to the corresponding alcohol by electroreduction in sulfuric acid at 20-30° in 69-78% yield [979],... [Pg.139]

In 23-cpoxybutyric acid sodium borohydride opened the epoxide ring without affecting the carboxyl. Varying ratios of 2- and 3-hydroxybutyric acid were obtained depending on the reaction conditions. Sodium borohydride in alkaline solution gave 18% of a- and 82% of -hydroxybutyric acid while in the presence of lithium bromide the two isomers were obtained in 60 40 percentage ratio [1000]. [Pg.143]

Refluxing of 9-fluorenone-l-carboxylic acid with zinc dust and copper sulfate in aqueous potassium hydroxide for 2.5 hours afforded 9-fluorenol-1-carboxylic acid in 94% yield [1004]. Reduction with sodium borohydride in aqueous methanol at 0-25° converted 5-ketopiperidine-2-carboxylic acid to /ra j-5-hydroxypiperidine-2-carboxylic acid in 54-61% yield [1005], On the other hand, reduction of V-benzyloxycarbonyl-5-ketopiperidine-2-carboxylic acid gave 89% yield of V-benzyloxycarbonyl-cis-5-hydroxypiperidine-2-car-boxylic acid under the same conditions [1005],... [Pg.143]

The CD fragment 1s synthesized starting with resolved bicyclic acid 129. Sequential catalytic hydrogenation and reduction with sodium borohydride leads to the reduced hydroxy acid 1. The carboxylic acid function is then converted to the methyl ketone by treatment with methyl-lithium and the alcohol is converted to the mesylate. Elimination of the latter group with base leads to the conjugated olefin 133. Catalytic reduction followed by equilibration of the ketone in base leads to the saturated methyl ketone 134. Treatment of that intermediate with peracid leads to scission of the ketone by Bayer Villiger reaction to afford acetate 135. The t-butyl protecting... [Pg.1154]

Miki and Hachiken reported a total synthesis of murrayaquinone A (107) using 4-benzyl-l-ferf-butyldimethylsiloxy-4fT-furo[3,4-f>]indole (854) as an indolo-2,3-quinodimethane equivalent for the Diels-Alder reaction with methyl acrylate (624). 4-Benzyl-3,4-dihydro-lfT-furo[3,4-f>]indol-l-one (853), the precursor for the 4H-furo[3,4-f>]indole (854), was prepared in five steps and 30% overall yield starting from dimethyl indole-2,3-dicarboxylate (851). Alkaline hydrolysis of 851 followed by N-benzylation of the dicarboxylic acid with benzyl bromide and sodium hydride in DMF, and treatment of the corresponding l-benzylindole-2,3-dicarboxylic acid with trifluoroacetic anhydride (TFAA) gave the anhydride 852. Reduction of 852 with sodium borohydride, followed by lactonization of the intermediate 2-hydroxy-methylindole-3-carboxylic acid with l-methyl-2-chloropyridinium iodide, led to the lactone 853. The lactone 853 was transformed to 4-benzyl-l-ferf-butyldimethylsiloxy-4H-furo[3,4- 7]indole 854 by a base-induced silylation. Without isolation, the... [Pg.258]

Two years later, the same group reported a formal synthesis of ellipticine (228) using 6-benzyl-6H-pyrido[4,3-f>]carbazole-5,ll-quinone (6-benzylellipticine quinone) (1241) as intermediate (716). The optimized conditions, reaction of 1.2 equivalents of 3-bromo-4-lithiopyridine (1238) with M-benzylindole-2,3-dicarboxylic anhydride (852) at —96°C, led regioselectively to the 2-acylindole-3-carboxylic acid 1233 in 42% yield. Compound 1233 was converted to the corresponding amide 1239 by treatment with oxalyl chloride, followed by diethylamine. The ketone 1239 was reduced to the corresponding alcohol 1240 by reaction with sodium borohydride. Reaction of the alcohol 1240 with f-butyllithium led to the desired 6-benzylellipticine quinone (1241), along with a debrominated alcohol 1242, in 40% and 19% yield, respectively. 6-Benzylellipticine quinone (1241) was transformed to 6-benzylellipticine (1243) in 38% yield by treatment with methyllithium, then hydroiodic acid, followed... [Pg.327]

In aqueous solutions, calcium chloride undergoes double decomposition reactions with a number of soluble salts of other metals to form precipitates of insoluble calcium salts. For example, mixing solutions of calcium chloride with sodium carbonate, sodium tungstate and sodium molybdate solutions precipitates the carbonates, tungstates, and molybdates of calcium, respectively. Similar precipitation reactions occur with carboxylic acids or their soluble salt solutions. CaCb forms calcium sulfide when H2S is passed through its solution. Reaction with sodium borohydride produces calcium borohydride, Ca(BH4)2. It forms several complexes with ammonia. The products may have compositions CaCl2 2NH3, CaCb dNHs, and CaCb SNHs. [Pg.163]

The preparatively useful and simple N-alkylation procedure that utilizes a combination of carboxylic acid and sodium borohydride has been applied to carbazole giving an efficient 9-ethylation. Also of preparative importance is the use of thallous ethoxide as base in dimethylformamide-ether 9-methyl-, 9-ethyl-, n-propyl-, n-butyl-, benzyl-, and n-allylcarbazoles were efficiently produced, as well as 9,9 -dicarbazolylalkanes using C3, C4, and Cg dihalides. 2-Acetyl- and 2-vinylcarbazole were also efficiently 9-ethylated by this route. Another more recent approach to N-alkylation of carbazole utilizes potassium terf-butoxide in the presence of a catalytic quantity of 18-crown-6 9-methylcarbazole was prepared in high yield. ... [Pg.99]

Carboxylic acids can also be used as a source of the C-4 atom, and the reaction of a diphenylurea derivative 835 with carboxylic acids in polyphosphoric acid (PPA), followed by treatment of the intermediates 836 with sodium borohydride has been used as a source of 3,4-dihydro-2-quinazolinones 837 <2006H(68)1443>. [Pg.214]

The methyl substituent of 2-methyl-4,8-dihydrobenzo[l,2- 5,4-. ]dithiophene-4,8-dione 118 undergoes a number of synthetic transformations (Scheme 8), and is therefore a key intermediate for the preparation of a range of anthraquinone derivatives <1999BMC1025>. Thus, oxidation of 118 with chromium trioxide in acetic anhydride at low temperatures affords the diacetate intermediate 119 which is hydrolyzed with dilute sulfuric acid to yield the aldehyde 120. Direct oxidation of 118 to the carboxylic acid 121 proceeded in very low yield however, it can be produced efficiently by oxidation of aldehyde 120 using silver nitrate in dioxane. Reduction of aldehyde 120 with sodium borohydride in methanol gives a 90% yield of 2-hydroxymethyl derivative 122 which reacts with acetyl chloride or thionyl chloride to produce the 2-acetoxymethyl- and 2-chloromethyl-4,8-dihydrobenzo[l,2-A5,4-3 ]-dithiophene-4,8-diones 123 and 124, respectively. [Pg.1156]

The carboxylic acid is then converted to its ester with ethanol in the presence of an acid. Carboxylic esters are not, in the normal course of events, reduced by sodium borohydride. The presence of an adjacent imine nitrogen apparently changes the resistance to that reagent. Thus, treatment of (71-7) with sodium borohydride leads to a selective reduction of the ester on the heterocyclic ring to an alcohol while leaving that on the benzene ring unaffected. There is thus obtained oxagrelate (71-8) [80]. [Pg.476]


See other pages where Sodium borohydride carboxylic acids is mentioned: [Pg.321]    [Pg.22]    [Pg.512]    [Pg.304]    [Pg.166]    [Pg.170]    [Pg.152]    [Pg.932]    [Pg.80]    [Pg.348]    [Pg.932]    [Pg.244]    [Pg.229]    [Pg.135]    [Pg.203]    [Pg.268]    [Pg.466]    [Pg.1500]    [Pg.142]    [Pg.455]    [Pg.300]    [Pg.291]    [Pg.7]    [Pg.18]    [Pg.99]    [Pg.526]    [Pg.170]   
See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.8 , Pg.237 ]

See also in sourсe #XX -- [ Pg.8 , Pg.237 ]




SEARCH



Carboxylic acid derivatives reductions, sodium borohydride

Carboxylic acid derivatives, sodium borohydride

Carboxylic acids reduction, with sodium borohydride

Sodium acids

Sodium carboxylate

Sodium carboxylates

Sodium carboxylic acids

© 2024 chempedia.info