Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium amide, preparation

Sodium amide (prepared from 8.6 g of sodium metal) in a 1-L Schlenk flask is suspended in THF (300mL). With rapid stirring, MejC,H (ref. 9) (42.6g,... [Pg.148]

The solubility of sodium amide prepared in this way is 1 mole per liter of liquid... [Pg.1251]

A suspension of 0.35 mol of sodium amide in 400 ml of liquid ammonia was prepared in the usual way (e./. Chapter II, Exp. 11) (note 1). To this suspension was added with swirling 0.30 mol of 1-methylthio-l-propyne, in portions of about 10 g, waiting about 10 s after the addition of each portion. Swirling was continued for 1.5 min after the addition of the last portion. Immediately thereafter the... [Pg.107]

A suspension of 0.40 mol of sodium amide in 300 ml of liquid ammonia was prepared as described in Chapter II, Exp. 11. To the suspension was added with swirling a mixture of 0.25 mol of CHgCeC-S-Ph (see Chapter IV, Exp. 14) and 40 ml of THE in about 2 min (note 1). Swirling was continued after the addition. Three minutes later (note 1) the stopper with glass tube was placed on the flask. The brown solution was forced through the glass tube and the plastic tube, connected to it under 400 g of finely crushed ice, which was contained in a 3-1 conical flask (see Chapter I, Fig. 3, and accompanying description of this operation). The flask was placed for... [Pg.110]

A suspension of sodium amide in 500 ml of anhydrous liquid artmonia was prepared from 18 g of sodium (see Chapter II, Exp. 11). To the suspension was added in 10 min with swirling a mixture of 0.30 mol of 1-chloro-l-ethynylcyclohexane (see VIII-2, Exp. 27) and 50 ml of diethyl ether. The reaction was very vigorous and a thick suspension was formed. The greater part of the ammonia was evaporated by placing the flask in a water bath at 50°C. After addition of 500 ml of ice-water the product was extracted three times with diethyl ether. The ethereal extracts were dried over anhydrous KjCOj and subsequently concentrated in a water-pum vacuum. Distillation of the residue afforded the amine, b.p. 54°C/15 mmHg, n 1.4345, in 87% yield. [Pg.230]

The terminal diyne 320 is prepared by coupling of the zinc acetylide 318 with /rfln.s-l-iodo-2-chloroethylenc (319), followed by elimination of HCI with sodium amide[231]. Similarly, terminal di- and triynes are prepared by using cw-l,2-dichloroethylene[232]. The 1-alkenyl or l-aryl-2-(perefluoroalkyl) acetylene 321 is prepared by the reaction of a zinc acetylide with halides[233]. [Pg.173]

The classical conditions for the Madelung indole synthesis are illustrated by the Organic Syntheses preparation of 2-methylindole which involves heating o-methylacetanilide with sodium amide at 250 C[1]. [Pg.27]

Solutions of sodium acetylide (HC=CNa) may be prepared by adding sodium amide (NaNH2) to acetylene m liquid ammonia as the solvent Terminal alkynes react similarly to give species of the type RC=CNa... [Pg.370]

Pentafluoroaniline. Pentafluoroaniline [771 -60-8] i2is been prepared from amination of hexafluoroben2ene with sodium amide inbquid ammonia or with ammonium hydroxide in ethanol (or water) at 167—180°C for 12—18 h. It is weakly basic (p = 0.28) and dissolves only in concentrated acids. Liquid crystals have been prepared from Schiff bases derived from pentafluoroaniline (230). [Pg.327]

Hydrazinium salts, N2H5 X, are acids in anhydrous hydrazine, metallic hydrazides, N2H, are bases. Neutralization in this solvent system involves the hydrazinium and hydrazide ions and is the reverse of equation 7. Metal hydrazides, formally analogous to the metal amides, are prepared from anhydrous hydrazine and the metals as well as from metal amides, alkyls, or hydrides. (The term hydrazide is also used for organic compounds where the carboxyUc acid OH is substituted with a N2H2.) Sodium hydrazide [13598-47-5] is made from sodium or, more safely, from sodium amide (14) ... [Pg.275]

The synthesis of 1-ethoxy-1-butjme has been reported previously, but the preparations have required multistep sequences. Two of the procedures use 1,2-dibromo-l-ethoxy butane which is dehydrohalogenated in two successive steps, first by an amine base and then by either powdered potassium hydroxide or sodium amide no yields are given. The... [Pg.67]

A solution of sodium amide (0.226 mole) in liquid ammonia is prepared in a 1-1. three-necked tlask equipped with a condenser, a ball-scaled mechanical stirrer, and a dro ii)ing funnel. Commercial anhydrous lii(uid ammonia (500 ml.) is introduced from... [Pg.38]

An identical preparation using potassium amide instead of sodium amide gave ,(3-diphenylpropionic acid in 57% yield. [Pg.40]

Methylindole has been prepared from the a5-methylphenyl-hydrazone of pyruvic acid, by the action of sodium amide or sodium hydride on indole followed by methyl iodide at elevated temperatures,by treatment of indole with methyl p-toluene-sulfonatc and anhydrous sodium carbonate in boiling xylene, and by the action of inelhyl sulfate on indole previously treated... [Pg.69]

Thienylacetylenes have been prepared in good yield through de-hydrohalogenation of 1,2-dichloroethylthiophenCs or 1-chlorovinyl thiophenes, which are obtained from acetylthiophenes and PCI5, with sodium amide and in liquid ammonia. " The 3-isomers show... [Pg.100]

The first amination of a halogenopyridine involving a rearrangement was carried out by Levine and Leake in 1955 in an attempt to prepare 3-phenacylpyridine. When 3-bromopyridine (27, X = Br) was allowed to react with sodium amide in liquid ammonia in the presence of sodio-acetophenone, the reaction mixture obtained consisted chiefly of amorphous nitrogenous material from which only 10% of 4-aminopyridine (34, Y = NH2) and 13.5% of 4-phenacylpyridine were isolated. [Pg.126]

Chlorpromazine (33) can probably be considered the prototype of the phenothiazine major tranquilizers. The antipsychotic potential of the phenothiazines was in fact discovered in the course of research with this agent. It is of note that, despite the great number of alternate analogs now available to clinicians, the original agent still finds considerable use. The first recorded preparation of this compound relies on the sulfuration reaction. Thus, heating 3-chlorodiphenylamine (30) with sulfur and iodine affords the desired phenothiazine (31) as well as a lesser amount of the isomeric product (32) produced by reaction at the 2 position. The predominance of reaction at 6 is perhaps due to the sterically hindered nature of the 2 position. Alkylation with w-C3-chloropropyl)dimethylamine by means of sodium amide affords chlorpromazine (33). ... [Pg.378]

Following the procedure given above, cyclopropylidenecyclopentane is prepared in 85% yield from 34.4 g (0.09 mole) of the phosphonium salt, 3.83 g (0.097 mole) of sodium amide (used instead of phenyllithium), and 8.4 g (0.1 mole) of cyclopentanone in ether as solvent (350 ml). The product has bp 69-70770 mm. [Pg.110]

These constitutions have recently received support from the work of A. Haller. If they are correct, then thujone should be capable of yielding trialkyl substitution products, whilst isothujone should not be able to go beyond the dialkyl stage. By alkylation with the assistance of sodium amide, triallylthujone could be prepared, but no higher substitution product than dimethylisothujone could be prepared from isothujone. In the course of his work, Haller prepared the following alkyl derivatives of the two ketones —... [Pg.237]

The final product is prepared as follows. 23,4 g of sodium amide is edded little by little to a solution of 92 g of N-benzylanillne in 500 ml of anhydrous xylene. The reaction mixture Is then heated at 130°-135 t for 6 hours. [Pg.163]

A suspension of sodium amide2 (0.1 mole) in liquid ammonia is prepared in a 500-ml. three-necked, round-bottomed flask fitted with a West condenser, a ball and socket glass mechanical stirrer (Note 1), and a dropping funnel. In the preparation of this reagent a small piece of clean sodium metal is added to 350 ml. of commercial anhydrous liquid ammonia. After the appearance of a blue color, a few crystals of hydrated ferric nitrate are added, whereupon the blue color is discharged. The remainder of the 2.3 g. (0.1 mole) of sodium (Note 2) is then rapidly added as small pieces. After all the sodium has been converted to sodium amide (Note 3), a solution of 16.4 g. (0.1 mole) of ethyl phenyl-acetate (Note 4) in 35 ml. of anhydrous ethyl ether is added dropwise over a 2-minute period, and the mixture is stirred for 20 minutes. To the dark green suspension is added over an 8-minute period a solution of 18.5 g. (0.1 mole) of (2-bromo-... [Pg.72]

Phenylcyclopropane has been prepared by the base catalyzed decomposition of 5-phenylpyrazoline (33 %),2 by the reaction of 1,3-dibromo-l phenylpropane with magnesium (68%),3 and by the reaction of 3-phenylpropyltrimethylammomum iodide with sodium amide in liquid ammonia (80%)4 However, the method frequently used at present is the reaction of styrene with the methylene iodide-zinc reagent (32%)5... [Pg.100]

When 2,7-dimethyloxepin is treated with potassium in liquid ammonia at — 70 C, a mixture of oct-4-en-2-one (1) and octa-4,6-dien-2-one (2) in a ratio of 75 20 is obtained.203 The major product can be separated by preparative gas chromatography in 23% yield. The analogous reaction of 3-benzoxepin gives, in 30% yield, a mixture of (2-cthylphenyl)acetaldehyde (3) and (2-ethynylphenyl)acetaldehyde (4) that resists separation.203 The Latter product can be formed exclusively in 17% yield when 3-benzoxepin is treated with sodium amide in tetra-hydrofuran at 33 C for 210 minutes.203... [Pg.41]


See other pages where Sodium amide, preparation is mentioned: [Pg.10]    [Pg.106]    [Pg.111]    [Pg.124]    [Pg.125]    [Pg.130]    [Pg.132]    [Pg.229]    [Pg.240]    [Pg.120]    [Pg.30]    [Pg.92]    [Pg.465]    [Pg.324]    [Pg.373]    [Pg.401]    [Pg.370]    [Pg.471]    [Pg.537]    [Pg.932]    [Pg.1575]    [Pg.145]   
See also in sourсe #XX -- [ Pg.48 , Pg.80 ]

See also in sourсe #XX -- [ Pg.48 , Pg.80 ]




SEARCH



Amides, preparation

Iron, catalysts for preparation sodium amide

Sodium amide

Sodium preparation

© 2024 chempedia.info