Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium acetate , reaction

Cinnamic acid is usually prepared by Perkin s reaction, benzaldehyde being heated with sodium acetate in the presence of acetic anhydride. It is probable that the benzaldehyde and the acetic anhydride combine under the catalytic action of the sodium acetate, and the product then readily loses water to give mono-benzylidene acetic anhydride (. ). The latter, when subsequently... [Pg.236]

Semicarbazones. Dissolve 1 g. of semicarbazide hydrochloride and 1 5g. of crystallised sodium acetate in 8-10 ml. of water add 0 - 5-1 g. of the aldehyde or ketone and shake. If the mixture is turbid, add alcohol (acetone-free) or water until a clear solution is obtained shake the mixture for a few minutes and allow to stand. Usually the semicarbazone crystallises from the cold solution on standing, the time varying from a few minutes to several hours. The reaction may be accelerated,... [Pg.344]

The reaction represented is that with hydrazine solution, produced from hydrazine sulphate and sodium acetate in the presence of aqueous alcohol. Excellent results are also obtained by interaction of the commercially available 60-64 per cent, hydrazine solution with a solution of 2 4 dinitrochloro-benzene in triethylene glycol or in diethylene glycol at about 20°. [Pg.635]

A mixture of an acid anhydride and a ketone is saturated with boron trifluoride this is followed by treatment with aqueous sodium acetate. The quantity of boron trifluoride absorbed usually amounts to 100 mol per cent, (based on total mola of ketone and anhydride). Catalytic amounts of the reagent do not give satisfactory results. This is in line with the observation that the p diketone is produced in the reaction mixture as the boron difluoride complex, some of which have been isolated. A reasonable mechanism of the reaction postulates the conversion of the anhydride into a carbonium ion, such as (I) the ketone into an enol type of complex, such as (II) followed by condensation of (I) and (II) to yield the boron difluoride complex of the p diketone (III) ... [Pg.861]

Chlorodiphenyl. Diazotise 32 g. of o-chloroaniline (Section IV,34) in the presence of 40 ml. of concentrated hydrochloric acid and 22 -5 ml. of water in the usual manner (compare Section IV,61) with concentrated sodium nitrite solution. Transfer the cold, filtered diazonium solution to a 1 5 htre bolt-head flask surrounded by ice water, introduce 500 ml. of cold benzene, stir vigorously, and add a solution of 80 g. of sodium acetate trihydrate in 200 ml. of water dropwise, maintaining the temperature at 5-10°. Continue the stirring for 48 hours after the first 3 hours, allow the reaction to proceed at room temperature. Separate the benzene layer, wash it with water, and remove the benzene by distillation at atmospheric pressure distil the residue under reduced pressure and collect the 2-chlorodiphenyl at 150-155°/10 mm. The yield is 18 g. Recrystalliae from aqueous ethanol m.p. 34°. [Pg.928]

Dissolve 14 g. of p-phenetidine (2) in 240 ml. of water to which 20 ml. of 5N hydrochloric acid (or 9 ml. of the concentrated acid) have been added stir the solution with about 5 g. of decolourising carbon for 5 minutes, warm, and filter the solution with suction. Transfer the cold filtered solution of p-phenetidine hydrochloride to a 700 ml. conical flask, add 13 g. (12 ml.) of acetic anhydride and swirl the contents to dissolve the anhydride. Immediately add a solution of 16 g. of crystallised sodium acetate in 50 ml. of water and stir (or swirl) the contents of the flask vigorously. Cool the reaction mixture in an ice bath, filter with suction and wash with cold water. RecrystaUise from hot water (with the addition of a little decolourising carbon, if necessary), filter and dry. The yield of pure phenacetin, m.p. 137°, is 12 g. [Pg.997]

Soon after the invention of the Wacicer process, the formation of vinyl acetate by the reaction of ethylene with PdCh in AcOH in the presence of sodium acetate was reported[106,107]. No reaction takes place in the absence of base. The reaction of Pd(OAc)T with ethylene forms vinyl acetate. [Pg.37]

The carbonylation of COD PdCl2 complex in aqueous sodium acetate produces /rui7x-2-hydroxy-5-cyclooctenecarboxylic acid /i-lactone (240). The lactone is obtained in 79% yield directly by the carbonylation of the COD complex in aqueous sodium acetate solution[220]. /i-Propiolactone (241) is obtained in 72% yield by the reaction of the PdCC complex of ethylene with CO and water in MeCN at —20 " C. /3-Propiolactone synthesis can be carried out with a catalytic amount of PdCC and a stoichiometric amount of CuCl2[221]. [Pg.53]

Mercuration occurs m the 5-position (4501 as demonstrated b the subsequent conversion of the mercurated derivatives (209) to the corresponding 2-amino-5-halothiazoles (Scheme 132) (396. 451). The reaction is favored by the presence of sodium acetate (452). Nitrogen mercurated intermediates have never been isolated. [Pg.81]

Hydroxy-4-methylthiazole failed to react when submitted to Friedel-Crafts benzoylation conditions (349) on the other hand, it reacted normally in Gattermann and in Reimer-Tiemann formylation reactions, affording the 5-formyl derivative (348). 4-Methylthiazole is insufficiently activated and fails to react under the same conditions. 2,4-Dimethylthiazole undergoes perfluoroalkylation when heated at 200° for 8 hr in a sealed tube with perfluoropropyl iodide and sodium acetate (116) (358). [Pg.103]

If a solution of acetic acid at equilibrium is disturbed by adding sodium acetate, the [CHaCOO-] increases, suggesting an apparent increase in the value of K. Since Ka must remain constant, however, the concentration of all three species in equation 6.26 must change in a fashion that restores to its original value. In this case, equilibrium is reestablished by the partial reaction of CHaCOO and HaO+ to produce additional CHaCOOH. [Pg.148]

The observation that a system at equilibrium responds to a stress by reequilibrating in a manner that diminishes the stress, is formalized as Le Chatelier s principle. One of the most common stresses that we can apply to a reaction at equilibrium is to change the concentration of a reactant or product. We already have seen, in the case of sodium acetate and acetic acid, that adding a product to a reaction mixture at equilibrium converts a portion of the products to reactants. In this instance, we disturb the equilibrium by adding a product, and the stress is diminished by partially reacting the excess product. Adding acetic acid has the opposite effect, partially converting the excess acetic acid to acetate. [Pg.148]

A mixture of acetic acid and sodium acetate is one example of an acid/base buffer. The equilibrium position of the buffer is governed by the reaction... [Pg.168]

Copper acetate, ferrous acetate, silver acetate [563-63-3] basic aluminum acetate, nickel acetate [373-02-4] cobalt acetate, and other acetate salts have been reported to furnish anhydride when heated. In principle, these acetates could be obtained from low concentration acetic acid. CompHcations of soHds processing and the scarcity of knowledge about these thermolyses make industrial development of this process expensive. In the eady 1930s, Soviet investigators discovered the reaction of dinitrogen tetroxide [10544-72-6] and sodium acetate [127-09-3] to form anhydride ... [Pg.78]

The important chemical properties of acetyl chloride, CH COCl, were described ia the 1850s (10). Acetyl chloride was prepared by distilling a mixture of anhydrous sodium acetate [127-09-3J, C2H202Na, and phosphorous oxychloride [10025-87-3] POCl, and used it to interact with acetic acid yielding acetic anhydride. Acetyl chloride s violent reaction with water has been used to model Hquid-phase reactions. [Pg.81]

Acetyl chlotide was formerly manufactured by the action of thionyl chlotide [7719-09-7], CI2OS, on gray acetate of lime, but this route has been largely supplanted by the reaction of sodium acetate or acetic acid and phosphoms ttichlotide [7719-12-2] (24). A similar route apparently is stiU being used in the Soviet Union (25). Both pathways ate inherently costly. [Pg.81]

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

The iodination reaction can also be conducted with iodine monochloride in the presence of sodium acetate (240) or iodine in the presence of water or methanolic sodium acetate (241). Under these mild conditions functionalized alkenes can be transformed into the corresponding iodides. AppHcation of B-alkyl-9-BBN derivatives in the chlorination and dark bromination reactions allows better utilization of alkyl groups (235,242). An indirect stereoselective procedure for the conversion of alkynes into (H)-1-ha1o-1-alkenes is based on the mercuration reaction of boronic acids followed by in situ bromination or iodination of the intermediate mercuric salts (243). [Pg.315]

Primary amides condense with hydroxybenzaldehydes in a manner similar to amines. This reaction is often conducted in the presence of sodium acetate or an organic base such as pyridine. For example, the reaction of sahcylaldehyde and propionamide produces sahcyhdene propionamide (58). [Pg.506]

Perkin Reaction. A product of significant commercial importance, coumarin [91-64-5] is made by the reaction of sahcylaldehyde with acetic anhydride and sodium acetate, a Perkin reaction (61). [Pg.506]

Manufacture and Uses. Acetoacetic esters are generally made from diketene and the corresponding alcohol as a solvent ia the presence of a catalyst. In the case of Hquid alcohols, manufacturiag is carried out by continuous reaction ia a tubular reactor with carefully adjusted feeds of diketene, alcohol, and catalyst, or alcohol—catalyst blend followed by continuous purification (Fig. 3). For soHd alcohols, an iaert solvent is used. Catalysts used iaclude strong acids, tertiary amines, salts such as sodium acetate [127-09-3], organophosphoms compounds, and organometaHic compounds (5). [Pg.481]

O-Acylation of 2-nitropropane occurs on reaction with either ketene or acetic anhydride (61) in the presence of dry sodium acetate at 70—80°C. Ketovinylation of 2-nitropropane at the 1-position occurs on treatment of sodium 2-propanenitronate with a chlorovinyl ketone (62). [Pg.101]

The production of triphenyl tin hydroxide [76-87-9] and triphenyl tin acetate [900-95-8] start with triphenyl tin chloride, which is prepared by the Kocheshkov redistribution reaction from tetraphenyltin and tin tetrachloride. The hydroxide is prepared from the chloride by hydrolysis with aqueous sodium hydroxide. The acetate can be made directiy from the chloride using sodium acetate or from the hydroxide by neutrali2ation with a stoichiometric quantity of acetic acid. [Pg.70]

Cellulose esters of aromatic acids, aUphatic acids containing more than four carbon atoms and aUphatic diacids are difficult and expensive to prepare because of the poor reactivity of the corresponding anhydrides with cellulose Httle commercial interest has been shown in these esters. Of notable exception, however, is the recent interest in the mixed esters of cellulose succinates, prepared by the sodium acetate catalyzed reaction of cellulose with succinic anhydride. The additional expense incurred in manufacturing succinate esters is compensated by the improved film properties observed in waterborne coatings (5). [Pg.249]

Mixed cellulose esters containing the dicarboxylate moiety, eg, cellulose acetate phthalate, have commercially useful properties such as alkaline solubihty and excellent film-forming characteristics. These esters can be prepared by the reaction of hydrolyzed cellulose acetate with a dicarboxyhc anhydride in a pyridine or, preferably, an acetic acid solvent with sodium acetate catalyst. Cellulose acetate phthalate [9004-38-0] for pharmaceutical and photographic uses is produced commercially via the acetic acid—sodium acetate method. [Pg.249]


See other pages where Sodium acetate , reaction is mentioned: [Pg.521]    [Pg.10]    [Pg.521]    [Pg.10]    [Pg.116]    [Pg.237]    [Pg.368]    [Pg.452]    [Pg.626]    [Pg.713]    [Pg.864]    [Pg.976]    [Pg.160]    [Pg.282]    [Pg.62]    [Pg.65]    [Pg.359]    [Pg.295]    [Pg.533]    [Pg.262]    [Pg.142]    [Pg.222]    [Pg.383]    [Pg.142]    [Pg.44]    [Pg.455]   


SEARCH



Sodium acetate

© 2024 chempedia.info