Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Small-molecule compounds biosynthesis

A large number of a, 3-didehydro-a-amino acids have been identified as constituents of relatively low molecular weight cyclic compounds from microbial sources. However, the presence of a,p-didehydroalanine in bacterial as well as in mammalian histidine ammonia lyase and in phenylalanine ammonia lyase shows that the occurrence of a,p-didehydro-a-amino acids is not limited to small molecules alone 8 These residues are incorporated in natural sequences by posttranslation modification. a,p-Didehydro-a-amino acids have also been postulated to be precursors in the biosynthesis of several heterocyclic metabolites including penicillin and cephalosporin 9 Other well-known compounds containing ,( -di-dehydro-a-amino acids are nisin 10,11 (a food preservative112 ), subtilin (a broad spectrum antibiotic) 13 and some of the metabolites isolated from Streptomyces strains such as gri-seoviridin 14 ... [Pg.636]

A schematic block diagram of the metabolism of a typical aerobic heterotroph. The block labeled Catabolism represents pathways by which nutrients are converted to small-molecule starting materials for biosynthetic processes. Catabolism also supplies the energy (ATP) and reducing power (NADPH) needed for activities that occur in the second block these compounds shuttle between the two boxes. The block labeled Biosynthesis represents the synthesis of low- to medium-molecular-weight components of the cell as well as the synthesis of proteins, nucleic acids, lipids, and carbohydrates and the assembly of membranes, organelles, and the other structures of the cell. [Pg.231]

Type 2 MTs, also currently understood to function exclusively as OMTs, are found in all lignin-producing plants. This family is specific for coenzyme A derivatized phenylpropanoid compounds and appears to be less diverse in sequence and gene number than the type 1 family of MTs (Fig. 2.3). Based on database searches, type 2 OMTs consist of caffeoyl and feruloyl coenzyme-A specific OMTs (CCoAOMTs). The most closely related enzymes to plant CCoAOMTs are the mammalian small molecule methyltransferases, including catechol OMT and bacterial MTs involved in macrolide biosynthesis. [Pg.39]

Details about structure, biosynthesis, and classification of phenolics are described in the other chapters in this handbook. Plant phenolics have a distinctive ability to form non-covalent, intermolecular complexes with each other and with both large and small molecules. Recognition of the antioxidant activities of many polyphenols has established correlation with the health benefits by such compounds [34]. This leads to the development of commercial products containing free-radical-scavenging phytochemical mixtures, for example, Pycnogenol (procyanidin extracted from Pinus maritima). Table 82.2 represents a list of polyphenolic compounds used in nutraceuticals and their biologic effects on human health. [Pg.4603]

Triterpenes and Steroids in Invertebrates Insects.—Terpenoid metabolism in insects will be considered separately from other invertebrates. Although insects do not possess the complete machinery required for biosynthesis of sterols from small molecules, it has been reported that a Sarcophaga bullata homogenate converts squalene into a compound with the chromatographic properties of squalene 2,3-oxide. However, this report warrants substantiation. The major insect juvenile hormone (133 R = Me) becomes labelled from [ C]acetate and also from l-[ H or... [Pg.61]

Conventional multistep synthesis of natural products reduces the overall yield of the target molecules. In contrast, biomimetic enantioselective domino reactions, promoted by small-molecule artificial enzymes, are more useful for the practical synthesis of natural products and related compounds. The stereoselective formation of polycyclic isoprenoids by the cyclase-induced cyclization of polypren-oids is one of the most remarkable steps in biosynthesis because this reaction results in the formation of several new quaternary and tertiary stereocenters and new rings in a single step. The use of biomimetic polycyclization with artificial cyclase is the most ideal chemical method for the synthesis of these polycyclic terpenoids. In this chapter, biosynthesis of polycyclic terpenoids, biomimetic stereoselective polyene cyclization induced by artificial cyclases, and total synthesis of bioactive natural products using stereoselective polyene cyclization as a key step will be discussed. [Pg.296]

Pheromone identification is still difficult because the structure of unique compounds present in small amounts in mixtures of similar molecules has to be elucidated. This topic will be discussed in detail by Ando as well as by others, showing nicely the recent progress in analytical techniques. The following chapter by R. Jurenka deals with insect pheromone biosynthesis with special emphasis on lepidopteran pheromones and also covers genetic aspects. The subsequent chapter by C. Keeling et al. describes the hymenopteran semio-chemicals (bees and ants), describing pheromones and allelochemicals. The hymenoptera add a certain flavor to the scene, because now the complexity of social insects with their many interactions comes into play, as well as the multi-level (multi-trophic) signals used by parasitoids. [Pg.9]

Amino acids are small organic molecules that posses both an amino and a carboxyl group. Amino acids occur in nature in a multitude of biological forms, either free or conjugated to various types of compounds, or as the building blocks of proteins. The amino acids that occur in proteins are named a-amino acids and have the empirical formula RCH(NH2)COOH. Only 20 amino acids are used in nature for the biosynthesis of the proteins, because only 20 amino acids are coded by the nucleic acids. [Pg.790]


See other pages where Small-molecule compounds biosynthesis is mentioned: [Pg.304]    [Pg.294]    [Pg.137]    [Pg.361]    [Pg.389]    [Pg.21]    [Pg.74]    [Pg.221]    [Pg.98]    [Pg.183]    [Pg.633]    [Pg.241]    [Pg.280]    [Pg.389]    [Pg.650]    [Pg.2]    [Pg.178]    [Pg.193]    [Pg.496]    [Pg.241]    [Pg.693]    [Pg.6]    [Pg.400]    [Pg.312]    [Pg.308]    [Pg.508]    [Pg.509]    [Pg.113]    [Pg.3]    [Pg.163]    [Pg.241]    [Pg.14]    [Pg.151]    [Pg.163]    [Pg.66]    [Pg.89]    [Pg.492]    [Pg.3938]    [Pg.234]    [Pg.606]    [Pg.329]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



Small-molecule compounds

© 2024 chempedia.info