Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sims, The

Ions are also used to initiate secondary ion mass spectrometry (SIMS) [ ], as described in section BI.25.3. In SIMS, the ions sputtered from the surface are measured with a mass spectrometer. SIMS provides an accurate measure of the surface composition with extremely good sensitivity. SIMS can be collected in the static mode in which the surface is only minimally disrupted, or in the dynamic mode in which material is removed so that the composition can be detemiined as a fiinction of depth below the surface. SIMS has also been used along with a shadow and blocking cone analysis as a probe of surface structure [70]. [Pg.310]

Secondary ion mass spectrometry (SIMS) is by far the most sensitive surface teclmique, but also the most difficult one to quantify. SIMS is very popular in materials research for making concentration depth profiles and chemical maps of the surface. For a more extensive treatment of SIMS the reader is referred to [3] and [14. 15 and 16]. The principle of SIMS is conceptually simple When a surface is exposed to a beam of ions... [Pg.1860]

Figure Bl.25.8. The principle of SIMS Primary ions with an energy between 0.5 and 10 keV cause a collisional cascade below the surface of the sample. Some of the branches end at the surface and stimulate the emission of neutrals and ions. In SIMS, the secondary ions are detected directly with a mass spectrometer. Figure Bl.25.8. The principle of SIMS Primary ions with an energy between 0.5 and 10 keV cause a collisional cascade below the surface of the sample. Some of the branches end at the surface and stimulate the emission of neutrals and ions. In SIMS, the secondary ions are detected directly with a mass spectrometer.
Confusingly, FAB is sometimes called secondary ion mass spectrometry (SIMS), the secondary referring to the nature of the process (primary bombardment, secondary emission), but see next item. [Pg.386]

Environment. Detection of environmental degradation products of nerve agents directly from the surface of plant leaves using static secondary ion mass spectrometry (sims) has been demonstrated (97). Pinacolylmethylphosphonic acid (PMPA), isopropylmethylphosphonic acid (IMPA), and ethylmethylphosphonic acid (EMPA) were spiked from aqueous samples onto philodendron leaves prior to analysis by static sims. The minimum detection limits on philodendron leaves were estimated to be between 40 and 0.4 ng/mm for PMPA and IMPA and between 40 and 4 ng/mm for EMPA. Sims analyses of IMPA adsorbed on 10 different crop leaves were also performed in order to investigate general apphcabiflty of static sims for... [Pg.247]

Applications of ISS to polymer analysis can provide some extremely useful and unique information that cannot be obtained by other means. This makes it extremely complementary to use ISS with other techniques, such as XPS and static SIMS. Some particularly important applications include the analysis of oxidation or degradation of polymers, adhesive failures, delaminations, silicone contamination, discolorations, and contamination by both organic or inorganic materials within the very outer layers of a sample. XPS and static SIMS are extremely comple-mentar when used in these studies, although these contaminants often are undetected by XPS and too complex because of interferences in SIMS. The concentration, and especially the thickness, of these thin surfiice layers has been found to have profound affects on adhesion. Besides problems in adhesion, ISS has proven very useful in studies related to printing operations, which are extremely sensitive to surface chemistry in the very outer layers. [Pg.523]

Useful yield provides an overall measure of the extent to which the sputtered material is used for analysis. It is a quantity employed to estimate the sensitivity of the mass spectrometric method. Values of Y (X (A)) for elements typically range from 10 to 10 in TOF SIMS. The number of sputtered particles A per incident primary ion (sputtering yield) can be measured from elemental and multielemental standards under different operational conditions and can, therefore, by judicious interpolation between standards, be estimated with reasonable accuracy for the material being analyzed. [Pg.93]

The basic principle of e-beam SNMS as introduced by Lipinsky et al. in 1985 [3.60] is simple (Fig. 3.30) - as in SIMS, the sample is sputtered with a focused keV ion beam. SN post-ionization is accomplished by use of an e-beam accelerated between a filament and an anode. The applied electron energy Fe a 50 20 eV is higher than the range of first ionization potentials (IP) of the elements (4—24 eV, see Fig. 3.31). Typical probabilities of ionization are in the 0.01% range. SD and residual gas suppression is achieved with electrostatic lenses before SN post-ionization and energy filtering, respectively. [Pg.123]

The main experimental techniques used to study the failure processes at the scale of a chain have involved the use of deuterated polymers, particularly copolymers, at the interface and the measurement of the amounts of the deuterated copolymers at each of the fracture surfaces. The presence and quantity of the deuterated copolymer has typically been measured using forward recoil ion scattering (FRES) or secondary ion mass spectroscopy (SIMS). The technique was originally used in a study of the effects of placing polystyrene-polymethyl methacrylate (PS-PMMA) block copolymers of total molecular weight of 200,000 Da at an interface between polyphenylene ether (PPE or PPO) and PMMA copolymers [1]. The PS block is miscible in the PPE. The use of copolymers where just the PS block was deuterated and copolymers where just the PMMA block was deuterated showed that, when the interface was fractured, the copolymer molecules all broke close to their junction points The basic idea of this technique is shown in Fig, I. [Pg.223]

In TOF-SIMS, the source of primary ions is pulsed at a rate of a few kHz. The pulse width is on the order of 1 ns. Secondary ions ejected from the sample surface are accelerated through a potential V and then drift through a field-free TOF analyzer with different velocities, depending on their masses. The drift velocity of an ion with charge-to-mass ratio zjm can be determined from the expression ... [Pg.296]

If it is required that the surface of the sample remains undisturbed during analysis, SIMS must be carried out at very low surface removal rates, typically about 10 monolayer/s. The terms static and dynamic are used to divide the sputtering rate of the sample into regimes where only surface species are observed (static SIMS) or where surface and bulk species are observed (dynamic SIMS). The static limit is usually considered to be <10 ions/cm impinging on the sample surface. Under these conditions, only about 1/1000 atoms on the surface of the sample are struck by a primary ion. [Pg.297]

Figure 4. Peak assignment of spherical silsesquioxanes and homo-silsesquioxanes obtained from CH3SiX3 the accurate masses were determined by means of high resolution TOF-SIMS (the O-atoms located on the edges of the polyhedra are not shown). Figure 4. Peak assignment of spherical silsesquioxanes and homo-silsesquioxanes obtained from CH3SiX3 the accurate masses were determined by means of high resolution TOF-SIMS (the O-atoms located on the edges of the polyhedra are not shown).
William Schopf studied supercrustal rock samples from Akilia Raman and ion microscopic photographs showed the presence of carbon-containing inclusions in grains of apatite. The carbon isotope ratio was determined by secondary ion mass spectroscopy (SIMS) the 813C value was -29% 4%, in agreement with earlier analyses. This in turn confirmed the values obtained by Mojzsis (1996), which had been questioned by Lepland et al. three years later. The final verdict on the oldest fossils in western Greenland may not be reached for several years yet (McKeegan et al., 2007 Eiler, 2007). [Pg.263]

Experimental measurements of DH in a-Si H using SIMS were first performed by Carlson and Magee (1978). A sample is grown that contains a thin layer in which a small amount (=1-3 at. %) of the bonded hydrogen is replaced with deuterium. When annealed at elevated temperatures, the deuterium diffuses into the top and bottom layers and the deuterium profile is measured using SIMS. The diffusion coefficient is obtained by subtracting the control profile from the annealed profile and fitting the concentration values to the expression, valid for diffusion from a semiinfinite source into a semi-infinite half-plane (Crank, 1956),... [Pg.422]

The quantification capability is normally limited by the detector and/or the ion source. The MCP that is often utilized in TOF instruments cannot fully handle the ion currents that are produced in MALDI and are often saturated to some extent. With other ion sources, such as SIMS, the detection system is less strained so the detector is less limiting. Instead the ion source will limit the quality in quantification. Magnetic sectors and also qudmpoles are more often utilized when quantification is important. [Pg.45]

Fig. 11.6. Diagram depicting desorption ionization (MALDI, FAB or SIMS). The operating principles of the three techniques are similar. The initiating event is exposure of the analyte to a beam of photons, atoms or ions. In order to prevent damage to the fragile analyte molecules and enhance the conversion of the involatile molecules into gas-phase ions, a matrix is employed. For MALDI, the matrix compounds are UV absorbing compounds such as hydroxycinnamic acid. The most commonly used FAB matrix was glycerol and ammonium chloride was employed by some investigators in SIMS experiments (although at low ion beam fluxes molecular species could be effectively ionized for many analytes with minimal evidence of damage by the primary ion beam). Fig. 11.6. Diagram depicting desorption ionization (MALDI, FAB or SIMS). The operating principles of the three techniques are similar. The initiating event is exposure of the analyte to a beam of photons, atoms or ions. In order to prevent damage to the fragile analyte molecules and enhance the conversion of the involatile molecules into gas-phase ions, a matrix is employed. For MALDI, the matrix compounds are UV absorbing compounds such as hydroxycinnamic acid. The most commonly used FAB matrix was glycerol and ammonium chloride was employed by some investigators in SIMS experiments (although at low ion beam fluxes molecular species could be effectively ionized for many analytes with minimal evidence of damage by the primary ion beam).
Figure 8.9 Third stage of SIM. The sections of the creep modulus curve are shifted parallel to the time axis to produce a single continuous curve. Small corrections are applied to allow for fibre shrinkage and for the thermal history of the material. Figure 8.9 Third stage of SIM. The sections of the creep modulus curve are shifted parallel to the time axis to produce a single continuous curve. Small corrections are applied to allow for fibre shrinkage and for the thermal history of the material.
Figure 8.10 Fourth stage of SIM. The composite modulus curve of Figure 8.9 is inverted to yield the predicted creep curve for the reference temperature. Figure 8.10 Fourth stage of SIM. The composite modulus curve of Figure 8.9 is inverted to yield the predicted creep curve for the reference temperature.
In the present study the surface chemistry of birnessite and of birnessite following the interaction with aqueous solutions of cobalt(II) and cobalt(III) amine complexes as a function of pH has been investigated using two surface sensitive spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The significant contribution that such an investigation can provide rests in the information obtained regarding the chemical nature of the neat metal oxide and of the metal oxide/metal ion adsorbate surfaces, within about the top 50 of the material surface. The chemical... [Pg.504]

Mass spectrometry is traditionally a gas phase technique for the analysis of relatively volatile samples. Effluents from gas chromatographs are already in a suitable form and other readily vaporized samples could be fairly easily accommodated. However the coupling of mass spectrometry to liquid streams, e.g. HPLC and capillary electrophoresis, posed a new problem and several different methods are now in use. These include the spray methods mentioned below and bombarding with atoms (fast atom bombardment, FAB) or ions (secondary-ion mass spectrometry, SIMS). The part of the instrument in which ionization of the neutral molecules occurs is called the ion source. The commonest method of... [Pg.126]


See other pages where Sims, The is mentioned: [Pg.1828]    [Pg.41]    [Pg.528]    [Pg.529]    [Pg.550]    [Pg.555]    [Pg.564]    [Pg.86]    [Pg.1165]    [Pg.211]    [Pg.101]    [Pg.207]    [Pg.279]    [Pg.28]    [Pg.255]    [Pg.135]    [Pg.1253]    [Pg.23]    [Pg.252]    [Pg.200]    [Pg.204]    [Pg.247]    [Pg.32]    [Pg.32]    [Pg.33]    [Pg.272]    [Pg.137]    [Pg.401]    [Pg.462]    [Pg.185]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



SIM

SIMS

SIMS The Techniques and Outputs

The Fundamentals of SIMS

The characterisation of polymer surfaces by XPS and SIMS

ToF-SIMS The Technique

© 2024 chempedia.info