Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver ionic conductivity

AgsSBr, /3-AgsSI, and a-AgsSI are cationic conductors due to the structural disorder of the cation sublattices. AgsSI (see Fig. 5) has been discussed for use in solid-electrolyte cells (209,371, 374,414-416) because of its high silver ionic conductivity at rather low temperatures (see Section II,D,1). The practical use seems to be limited, however, by an electronic part of the conductivity that is not negligible (370), and by the instability of the material with respect to loss of iodine (415). [Pg.342]

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

Silver—Zinc Separators. The basic separator material is a regenerated cellulose (unplastici2ed cellophane) which acts as a semipermeable membrane aHowiag ionic conduction through the separator and preventing the migration of active materials from one electrode to the other. [Pg.555]

In spite of the extraordinarily high ionic conductivity of silver- and copper-ion conductors, these materials suffer from their low capacity and energy density. In addition, only a few positive electrode materials have been found until now. [Pg.537]

Cul) is not due to point defects but to partial occupation of crystallographic sites. The defective structure is sometimes called structural disorder to distinguish it from point defects. There are a large number of vacant sites for the cations to move into. Thus, ionic conductivity is enabled without use of aliovalent dopants. A common feature of both compounds is that they are composed of extremely polarizable ions. This means that the electron cloud surrounding the ions is easily distorted. This makes the passage of a cation past an anion easier. Due to their high ionic conductivity, silver and copper ion conductors can be used as solid electrolytes in solid-state batteries. [Pg.432]

Salts such as silver chloride or lead sulfate which are ordinarily called insoluble do have a definite value of solubility in water. This value can be determined from conductance measurements of their saturated solutions. Since a very small amount of solute is present it must be completely dissociated into ions even in a saturated solution so that the equivalent conductivity, KV, is equal to the equivalent conductivity at infinite dilution which according to Kohlrausch s law is the sum of ionic conductances or ionic mobilities (ionic conductances are often referred to as ionic mobilities on account of the dependence of ionic conductances on the velocities at which ions migrate under the influence of an applied emf) ... [Pg.621]

Every ionic crystal can formally be regarded as a mutually interconnected composite of two distinct structures cationic sublattice and anionic sublattice, which may or may not have identical symmetry. Silver iodide exhibits two structures thermodynamically stable below 146°C sphalerite (below 137°C) and wurtzite (137-146°C), with a plane-centred I- sublattice. This changes into a body-centred one at 146°C, and it persists up to the melting point of Agl (555°C). On the other hand, the Ag+ sub-lattice is much less stable it collapses at the phase transition temperature (146°C) into a highly disordered, liquid-like system, in which the Ag+ ions are easily mobile over all the 42 theoretically available interstitial sites in the I-sub-lattice. This system shows an Ag+ conductivity of 1.31 S/cm at 146°C (the regular wurtzite modification of Agl has an ionic conductivity of about 10-3 S/cm at this temperature). [Pg.138]

Ion exclusion chromatography, of ascorbic acid, 25 760 Ion hopping, 14 469 Ionic aggregates, 14 463—466 Ionically conducting polymers, 13 540 Ionic carbides, 4 647 Ionic compounds, rubidium, 21 822 Ionic conduction, ceramics, 5 587-589 Ionic crystals, 19 185. See also Silver halide crystals... [Pg.488]

In this section we are concerned with the properties of intrinsic Schottky and Frenkel disorder in pure ionic conducting crystals and with the same systems doped with aliovalent cations. As already remarked in Section I, the properties of uni-univalent crystals, e.g. sodium choride and silver bromide which contain Schottky and cationic Frenkel disorder respectively, doped with divalent cation impurities are of particular interest. At low concentrations the impurity is incorporated substitutionally together with an additional cation vacancy to preserve electrical neutrality. At sufficiently low temperatures the concentration of intrinsic defects in a doped crystal is negligible compared with the concentration of added defects. We shall first mention briefly the theoretical methods used for such systems and then review the use of the cluster formalism. [Pg.41]

In the last 20 years, new sulphide, sulphate, molybdate, halide, etc., based compositions have been obtained in the glassy state (Ingram, 1987). They have much higher ionic conductivity than most oxide glasses at ambient temperature, e.g. from 10 to 10 S cm in the case of some lithium or silver conducting glasses (Fig. 4.1(h)). [Pg.75]

Fig. 4.2 Typical variations in ionic conductivity with composition. In all cases, variations in alkali or silver content are very low compared to the observed variation in log a (a) influence of the network modifier (LijS) (b) influence of a doping salt (c) mixed alkali effect (d) mixed anion effect. References for data are indicated in Souquet and Perera (1990). Fig. 4.2 Typical variations in ionic conductivity with composition. In all cases, variations in alkali or silver content are very low compared to the observed variation in log a (a) influence of the network modifier (LijS) (b) influence of a doping salt (c) mixed alkali effect (d) mixed anion effect. References for data are indicated in Souquet and Perera (1990).
Dye sensitization plays an important role in photography. The sensitization mechanism for ZnO-materials as used in electro-photography is obviously in complete correspondence with these electrochemical experiments as shown for single crystals under high vacuum conditions by Heiland 56> and for imbedded ZnO-particles by Hauffe 57). Even for silver halides where electron injection as sensitization mechanism has been questioned by the energy transfer mechanism 58> electrochemical experiments have shown that the electron injection mechanism is at least energetically possible in contact with electrolytes 59>. Silver halides behave as mixed conductors with predominance of ionic conductivity at room temperature. These results will therefore not be discussed here in any detail since such electrodes are quite inconvenient for the study of excited dye molecules. [Pg.53]

Solid ionic conductors can also be used in the fabrication of solid state double-layer supercapacitors. An example is the device developed in the late 1960s by Gould Ionics which adopted a cell system using a silver-carbon electrode couple separated by the highly ionically conducting solid electrolyte RbAg4I5 (see Section 9.1) ... [Pg.307]

The silver halide crystals show ionic conductivity by Frenkel defects (interstitial silver ions, Ag"t). [Pg.331]

The key common property of such membranes is their ionic conductivity. An example is the Ag/AgCl electrode discussed previously. Although the primary charge-transfer reaction at this interface is that of the silver ion (6.27), the electrode will respond also to chloride ion (6.33), because of the low solubility product of AgCl. Let us now consider what happens if other ions that also form an insoluble silver salt are present in the solution. If the solubility product of the other salt (AgX) is lower than that of silver chloride and/or the activity ax is sufficiently high... [Pg.144]


See other pages where Silver ionic conductivity is mentioned: [Pg.258]    [Pg.447]    [Pg.354]    [Pg.225]    [Pg.129]    [Pg.338]    [Pg.42]    [Pg.336]    [Pg.431]    [Pg.268]    [Pg.269]    [Pg.320]    [Pg.3]    [Pg.75]    [Pg.85]    [Pg.293]    [Pg.565]    [Pg.276]    [Pg.308]    [Pg.576]    [Pg.345]    [Pg.410]    [Pg.486]    [Pg.159]    [Pg.191]    [Pg.415]    [Pg.370]    [Pg.372]    [Pg.388]    [Pg.374]    [Pg.258]    [Pg.10]    [Pg.20]   
See also in sourсe #XX -- [ Pg.341 , Pg.348 ]

See also in sourсe #XX -- [ Pg.341 , Pg.348 ]




SEARCH



Ionic conductance

Ionic conducting

Ionic conduction

Ionic conductivity

Silver conductivity

Silver iodide ionic conductivity

© 2024 chempedia.info