Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shell Control Problem

Some of the limitations of the current control theory were demonstrated on the Shell Control Problem [12]. [Pg.532]

A number of research issues in the areas of robust control, model predictive control, and control structure selection were mentioned previously. Unfortunately, even if all these problems were solved, a practical problem like the Shell Control Problem [23] could still not be tackled in a systematic fashion. All the research topics discussed so far in this paper are re-... [Pg.532]

The current widespread interest in MFC techniques was initiated by pioneering research performed by two industrial groups in the 1970s. Shell Oil (Houston, TX) reported their Dynamic Matrix Control (DMC) approach in 1979, while a similar technique, marketed as IDCOM, was published by a small French company, ADERSA, in 1978. Since then, there have been over one thousand applications of these and related MFC techniques in oil refineries and petrochemical plants around the world. Thus, MFC has had a substantial impact and is currently the method of choice for difficult multivariable control problems in these industries. However, relatively few applications have been reported in other process industries, even though MFC is a veiy general approach that is not limited to a particular industiy. [Pg.739]

Vuthandam et al. (1995) considered the top 2x2 subsystem of the heavy oil fractionator modeled in the Shell Standard Process Control Problem (Prett and Garcia, 1988) as... [Pg.165]

Garda, C. E., and Prett, D. M., Design methodology based on the fundamental control problem formulation. Shell Process Control Workshop, Houston, TX (1986). [Pg.201]

Froisy, J. B. Matsko, T., 1990. IDCOM-M Application to the Shell Fundamental Control Problem, AIChE Annual Meeting. [Pg.1265]

Fig. 23. Two types of hollow-fiber modules used for gas separation, reverse osmosis, and ultrafiltration applications, (a) Shell-side feed modules are generally used for high pressure appHcations up to - 7 MPa (1000 psig). Fouling on the feed side of the membrane can be a problem with this design, and pretreatment of the feed stream to remove particulates is required, (b) Bore-side feed modules are generally used for medium pressure feed streams up to - 1 MPa (150 psig), where good flow control to minimise fouling and concentration polarization on the feed side of the membrane is desired. Fig. 23. Two types of hollow-fiber modules used for gas separation, reverse osmosis, and ultrafiltration applications, (a) Shell-side feed modules are generally used for high pressure appHcations up to - 7 MPa (1000 psig). Fouling on the feed side of the membrane can be a problem with this design, and pretreatment of the feed stream to remove particulates is required, (b) Bore-side feed modules are generally used for medium pressure feed streams up to - 1 MPa (150 psig), where good flow control to minimise fouling and concentration polarization on the feed side of the membrane is desired.
A discussion of retention time in rotary Idlns is given in Brit. Chem. Eng., 27-29 (Januaiy 1966). Rotary-ldln heat control is discussed in detail by Bauer [Chem. Eng., 193-200 (May 1954)] and Zubrzycki [Chem. Can., 33-37 (Februaiy 1957)]. Reduction of iron ore in rotaiy Idlns is described by Stewart [Min. Congr J., 34—38 (December 1958)]. The use of balls to improve solids flow is discussed in [Chem. Eng., 120-222 (March 1956)]. Brisbane examined problems of shell deformation [ Min. Eng., 210-212 (Februaiy 1956)]. Instrumentation is discussed by Dixon [Ind. Eng. Chem. Process Des. Dev., 1436-1441 (July 1954)], and a mathematical simulation of a rotaiy Idln was developed by Sass [Ind. Eng. Chem. Process Des. Dev., 532-535 (October 1967)]. This last paper employed the empirical convection heat-transfer coefficient given previously, and its use is discussed in later correspondence [ibid., 318-319 (April 1968)]. [Pg.1208]

In the 1990s this approach became more common in order to ensure sufficient compressive strength with the trend to lower bulk densities. Furthermore the proportion of SAN to polyol has been increased to about 40%. This may lead to serious stability problems and care must be taken to control the size and distribution of the particles and prevent agglomeration. Polymer polyols using polystyrene as the polymer component have recently become available (Postech-Shell) and are claimed to exhibit good stability, low viscosity and less discolouration as well as providing price advantages. [Pg.796]

To achieve the desired cast density for Octol of 1.8g/cc it is necessary that the ratio of HMX TNT be 3 1. However, at this ratio the apparent viscosity, or efflux, is strongly dependent on the polymorphic variety of HMX used and on its particle size distribution. In the initial pilot production of Octol (Ref 3) it was found that for the desired efflux of < 15 sec, 60—70% of the solid HMX must consist of the beta-polymorph having particle diameters in the range of 500—800 microns. Such precise control of particle size was not possible at that time and early Octol casts were made at approximately 50 secs efflux. The economical production of Octol with a satisfactorily short efflux time continues to present a problem in loading shells with this expl (Refs 4, 11 29)... [Pg.409]

In order to realize the precise control of core/shell structures of small bimetallic nanoparticles, some problems have to be overcome. For example, one problem is that the oxidation of the preformed metal core often takes place by the metal ions for making the shell when the metal ions have a high-redox potential, and large islands of shell metal are produced on the preformed metal core. Therefore, we previously developed a so-called hydrogen-sacrificial protective strategy to prepare the bimetallic nanoparticles in the size range 1.5-5.5nm with controllable core/shell structures [132]. The strategy can be extended to other systems of bi- or multimetallic nanoparticles. [Pg.56]

There are other advantages of employing magnetic ball mills besides the control of mechanical milling modes. Since the centrifugal force becomes a secondary factor in milling, and the reactor shell rotates at low RPM, contamination from balls and shell wear is lower than in a vibrational or a planetary mill there is less ball wear involved and contaminations with Fe from steel become less of the problem. Also lower rotations and uniaxial movement of reactors paced on horizontal axle allow... [Pg.36]

Improper operation of a process may result in the vessel s exceeding design temperature. Proper control is the only solution to this problem. Maintenance procedures can also cause excessive temperatures. Sometimes the contents of a vessel may be burned out with torches. If the flame impinges on the vessel shell, overheating and damage may occur. [Pg.158]


See other pages where Shell Control Problem is mentioned: [Pg.128]    [Pg.221]    [Pg.279]    [Pg.262]    [Pg.251]    [Pg.97]    [Pg.75]    [Pg.75]    [Pg.352]    [Pg.1768]    [Pg.260]    [Pg.550]    [Pg.92]    [Pg.304]    [Pg.637]    [Pg.1295]    [Pg.1295]    [Pg.426]    [Pg.461]    [Pg.263]    [Pg.19]    [Pg.78]    [Pg.81]    [Pg.214]    [Pg.99]    [Pg.591]    [Pg.119]    [Pg.429]    [Pg.48]    [Pg.21]    [Pg.221]   
See also in sourсe #XX -- [ Pg.532 ]




SEARCH



Control problems

© 2024 chempedia.info