Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shear-thinning or pseudoplastic fluids

The most common type of time-independent non-Newtonian fluid behavioiu observed is pseudoplasticity or shear-thinning, characterised by an apparent viscosity which decreases with increasing shear rate. Both at very low and at very high shear rates, most shear-thinning polymer solutions and melts exhibit Newtonian behaviour, i.e. shear stress-shear rate plots become straight lines. [Pg.6]

Mathematical models for shear-thinning fluid behaviour [Pg.9]

Many mathematical expressions of varying complexity and form have been proposed in the literature to model shear-thinning characteristics some of these are straightforward attempts at cmve fitting, giving empirical relationships for the shear stress (or apparent viscosity)-shear rate curves for example, while others have some theoretical basis in statistical mechanics - as an extension of the application of the kinetic theory to the liquid state or the theory of rate processes, etc. Only a selection of the more widely used viscosity models is given here more complete descriptions of such models are available in many books [Bird et al., 1987 Carreau et al., 1997] and in a review paper [Bird, 1976], [Pg.9]

The relationship between shear stress and shear rate (plotted on double logarithmic coordinates) for a shear-thinning fluid can often be approximated by a straightline over a limited range of shear rate (or stress). For this part of the flow curve, an expression of the following form is applicable  [Pg.9]

SO the apparent viscosity for the so-called power-law (or Ostwald de Waele) fluid is thus given by  [Pg.10]


The other two classes of fluids depicted in Fig. 9.1.1 are the shear thinning or pseudoplastic fluid and the shear thickening or dilatant fluid. The most... [Pg.261]

The typical viscous behavior for many non-Newtonian fluids (e.g., polymeric fluids, flocculated suspensions, colloids, foams, gels) is illustrated by the curves labeled structural in Figs. 3-5 and 3-6. These fluids exhibit Newtonian behavior at very low and very high shear rates, with shear thinning or pseudoplastic behavior at intermediate shear rates. In some materials this can be attributed to a reversible structure or network that forms in the rest or equilibrium state. When the material is sheared, the structure breaks down, resulting in a shear-dependent (shear thinning) behavior. Some real examples of this type of behavior are shown in Fig. 3-7. These show that structural viscosity behavior is exhibited by fluids as diverse as polymer solutions, blood, latex emulsions, and mud (sediment). Equations (i.e., models) that represent this type of behavior are described below. [Pg.67]

The shearing characteristics of non-Newtonian fluids are illustrated in Fig. 7. Curves A and B represent viscoelastic behavior. Curve C illustrates the behavior if the fluid thins with increasing shear, generally referred to as shear thinning or pseudoplasticity. The opposite effect of shear thickening or dilatancy is shown as curve D. [Pg.978]

Based on viscosity of the samples, the flow of samples is broadly classified into three categories, namely, Newtonian, time independent non-Newtonian and time dependent non-Newtonian. Newtonian fluids show shear stress independent constant viscosity profile where as non-Newtonian fluids show a viscosity profile, which is dependent on the shear force and time. In time independent non-Newtonian fluids, the shear stress does not vary proportionally to the shear rate. The time independent non-Newtonian fluids show mainly three types of flow. A decreasing viscosity with an increase of shear rate is called shear thinning or pseudoplastic flow (Figure 46.12a). An increasing viscosity with an increase of shear rate is called shear thickening or dilatant flow. Some fluids need application of certain amount of force before any flow is induced that are known as Bingham plastics. [Pg.1048]

Figure 3.2 shows that as milk is concentrated, the nature of the fluid changes. At low concentrations it behaves as a Newtonian fluid with viscosity being constant for all rates of shear. However, above 25 per cent protein, the material is particularly viscous at low rates of shear. This fact is very important in cheese manufacture and those designing dairy plants have to ensure that a minimum rate of shear is maintained in the processing equipment which will include heat exchangers and maybe membrane units. The above behaviour, known as shear-thinning or pseudoplasticity is typical of polymer solutions and liquids with a second phase in suspension. Their behaviour can often be represented by an equation of the form ... [Pg.53]

The apparent viscosity, / app, is equal to the slope of a line from the origin to a point on the shear stress-shear rate curve it decreases or increases as the shear rate increases. Hence, the term viscosity for a non-Newtonian fluid has no meaning unless the shear rate is specified. In shear-thinning (or pseudoplastic) slurries, the apparent viscosity decreases as the shear rate increases and the value for n is less than one. In shear-thickening (or dilatant) slurries the apparent viscosity increases as the shear rate increases and the value of n is greater than 1 (Figure 4.2). [Pg.95]

Shear thinning or pseudoplastic behavior is an important property that must be taken into account in the design of polymer processes. However, it is not the only property, and in Chapter 3 models that describe the viscoelastic response of polymeric fluids will be discussed. However, first we would like to solve some basic one-dimensional isothermal flow problems using the shell momentum balance and the empiricisms for viscosity described in this section. [Pg.13]

In general, for shear-thinning pseudoplastic fluids the apparent viscosity will gradually decrease with time if there is a step increase in its rate of shear. This phenomenon is known as thixotropy. Similarly, with a shear-thickening fluid the apparent viscosity increases under these circumstances and the fluid exhibits rheopexy or negative-thixotropy. [Pg.114]

Many fluids show a decrease in viscosity with increasing shear rate. This behavior is referred to as shear thinning, which means that the resistance of the material to flow decreases and the energy required to sustain flow at high shear rates is reduced. These materials are called pseudoplastic (Fig. 3a and b, curves B). At rest the material forms a network structure, which may be an agglomerate of many molecules attracted to each other or an entangled network of polymer chains. Under shear this structure is broken down, resulting in a shear... [Pg.254]

Fluids with shear stresses that at any point depend on the shear rates only and are independent of time. These include (a) what are known as Bingham plastics, materials that require a minimum amount of stress known as yield stress before deformation, (b) pseudoplastic (or shear-thinning) fluids, namely, those in which the shear stress decreases with the shear rate (these are usually described by power-law expressions for the shear stress i.e., the rate of strain on the right-hand-side of Equation (1) is raised to a suitable power), and (c) dilatant (or shear-thickening) fluids, in which the stress increases with the shear rate (see Fig. 4.2). [Pg.175]

Non-Newtonian Viscosity In the cone-and-plate and parallel-disk torsional flow rheometer shown in Fig. 3.1, parts la and 2a, the experimentally obtained torque, and thus the % 2 component of the shear stress, are related to the shear rate y = y12 as follows for Newtonian fluids T12 oc y, implying a constant viscosity, and in fact we know from Newton s law that T12 = —/ . For polymer melts, however, T12 oc yn, where n < 1, which implies a decreasing shear viscosity with increasing shear rate. Such materials are called pseudoplastic, or more descriptively, shear thinning Defining a non-Newtonian viscosity,2 t],... [Pg.84]

Pseudoplastic Fluids, A pseudoplastic or a shear-thinning fluid is one of the most commonly encountered non-Newtonian fluids. The variation of the shear stress, t, versus the shear rate, 7, for a pseudoplastic fluid is shown in Figure 2. A plot of t versus 7 is characterized by linearity at very low and very high shear rates. The slope at very low shear rate gives the... [Pg.132]

Dilatant Fluids. Dilatant fluids or shear-thickening fluids are less commonly encountered than pseudoplastic (shear-thinning) fluids. Rheological dilatancy refers to an increase in the apparent viscosity with increasing shear rate (3). In many cases, viscometric data for a shear-thickening fluid can be fit by using the power law model with n > 1. Examples of fluids that are shear-thickening are concentrated solids suspensions. [Pg.134]

A convenient way to summarize the flow properties of fluids is by plotting flow curves of shear stress versus shear rate (r versus 7). These curves can be categorized into several rheological classifications. Foams are frequently pseudoplastic that is, as shear rate increases, viscosity decreases. This is also termed shear-thinning. Persistent foams (polyeder-schaum) usually exhibit a yield stress (rY), that is, the shear rate (flow) remains zero until a threshold shear stress is reached, then pseudoplastic or Newtonian flow begins. An example would be a foam for which the stress due to gravity is insufficient to cause the foam to flow, but the application of additional mechanical shear does cause flow (Figure 17). [Pg.40]

Based on the magnitude of n and to, the non-Newtonian behavior can be classified as shear thinning, shear thickening, Bingham plastic, pseudoplastic with yield stress, or dilatant with yield stress (see Fig. 2 and Table I). The Herschel-Bulkley model is able to describe the general flow properties of fluid foods within a certain shear range. The discussion on this classiflcation and examples of food materials has been reviewed by Sherman (1970), DeMan (1976), Barbosa-Canovas and Peleg (1983), and Barbosa-Canovas et al. (1993). [Pg.6]

When the shear stress of a liquid is directly proportional to the strain rate, as in Fig. 2.4a, the liquid is said to exhibit ideal viscous flow or Newtonian behavior. Most unfilled and capillary underfill adhesives are Newtonian fluids. Materials whose viscosity decreases with increasing shear rate are said to display non-Newtonian behavior or shear thinning (Fig. 2.4b). Non-Newtonian fluids are also referred to as pseudoplastic or thixotropic. For these materials, the shear rate increases faster than the shear stress. Most fllled adhesives that can be screen printed or automatically dispensed for surface-mounting components are thixotropic and non-Newtonian. A second deviation from Newtonian behavior is shear thickening in which viscosity increases with increasing shear rate. This type of non-Newtonian behavior, however, rarely occurs with polymers. ... [Pg.42]

In some colloidal dispersions, the shear rate (flow) remains at zero until a threshold shear stress is reached, termed the yield stress (ry), and then Newtonian or pseudoplastic flow begins. A common cause of such behaviour is the existence of an inter-particle or inter-molecular network, which initially acts like a solid and offers resistance to any positional changes of the volume elements. In this case, flow only occurs when the applied stress exceeds the strength of the network and what was a solid becomes a fluid. Examples include oil well drilling muds, greases, lipstick, toothpaste and natural rubber polymers. An illustration is provided in Figure 6.13. Here, the flocculated structures are responsible for the existence of a yield stress. Once disrupted, the nature of the floe break-up process determines the extent of shear-thinning behaviour as shear rate increases. [Pg.229]

Most fluids exhibit non-Newtonian behavior—blood, household products like toothpaste, mayonnaise, ketchup, paint, and molten polymers. As shown in Figure 7.9, shear stress, t, increases linearly with strain rate, y, for Newtonian fluids. Non-Newtonian fluids may be classified into those that are time dependent or time independent and include viscoelastic fluids. Shear thinning (pseudoplastic) and shear thickening (dilatant) fluids are time independent while rheopectic and thixotropic are time dependent. The shear stress (viscosity) of shear thinning fluids decreases with increasing shear rate and examples include blood and syrup. The viscosity of dilatant fluids increases with shear rate. The viscosity of rheopectic fluids—whipping cream, egg whites—increases with time while thixotropic fluids— paints (other than latex) and drilling muds— decrease their viscosity with the duration of the shear. [Pg.252]

Laboratory testing shows that visual examination and viscosity measurements are not sufficient to fully define polymer solvation. In this work, the solvation of hydroxyethyl cellulose (HEC) and xanthan has been studied. These polymers are both widely used in various petroleum applications. HEC is used in many workover and completion applications, while xanthan has its most wide spread uses in drilling and enhanced oil recovery (EOR) applications. Solublization of both polymers results in fluids with pseudoplastic (or shear thinning properties). Even though the polymers both exhibit pseudoplastic behivior, the polymers vary considerably as to their molecular size and physical properties. [Pg.281]


See other pages where Shear-thinning or pseudoplastic fluids is mentioned: [Pg.106]    [Pg.49]    [Pg.49]    [Pg.52]    [Pg.13]    [Pg.106]    [Pg.49]    [Pg.49]    [Pg.52]    [Pg.13]    [Pg.67]    [Pg.146]    [Pg.116]    [Pg.401]    [Pg.106]    [Pg.564]    [Pg.274]    [Pg.113]    [Pg.5]    [Pg.99]    [Pg.67]    [Pg.1151]    [Pg.173]    [Pg.92]    [Pg.140]    [Pg.958]    [Pg.213]    [Pg.460]    [Pg.438]    [Pg.178]    [Pg.232]    [Pg.21]    [Pg.21]   


SEARCH



Pseudoplastic

Pseudoplastic fluids

Pseudoplastic shear thinning

Pseudoplastic thinning

Pseudoplasticity

Pseudoplastics

Shear fluids

Shear thinning

Shear-thinning fluid

© 2024 chempedia.info