Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shape-selective catalysts, example

Shape selective catalysts, such as ZeoHtes of the H-ZSM-5 type, are capable of directing alkyl groups preferentially to the para position (18). The ratio of the catalyst to the substrate also plays a role ia controlling the regiochemistry of the alkylations. For example, selective alkylation of anilines at the para position is achieved usiag alkylatiag ageats and AlCl ia equimolar ratio (19). [Pg.552]

The use of zeolites can overcome many of these limitations and provide new controlled entries into these oxidized hydrocarbons and new materials. For example, some of the most valuable industrial intermediates are terminally oxidized hydrocarbons, snch as n-hexanol or adipic acid, that are not readily available in free-radical chain processes. The ability of zeolites to function as shape-selective catalysts can, in principle, be used to restrict access, by reactant or transition state selectivity, to sites not normally attacked by oxidants [3]. [Pg.276]

Zeolites are well known for shape-selective catalysis. Here the shape of the zeolite pores or cavities can control the shape of product. When catalytic reactions take place in channels of zeolites only those products that can be accommodated in the channels advance and emerge. Mobil s ZSM-5 is an example of a shape-selective catalyst. Many more zeolites with different pore sizes or large surface areas are being synthesized, extending the principle of shape-selective catalysis. Such developments are helpful for both existing industrial processes and environmental protection. [Pg.143]

If it can be shown that the photooxidation of hydrocarbons in zeolites is a general method, then the shape and size-selective properties of zeolites may potentially be used to control the selectivity of specific oxidation reactions (2,3). For example, ZSM-5 is an important shape-selective catalyst in many reactions, such as the disproportionation of toluene (4). Para-xylene is the dominant product because the transport of the other isomers, ortho- and meta-xylene, is restricted due to the pore size of ZSM-5. Thus, stereochemical aspects of selective photooxidation reactions may also be influenced by the zeolite and may be used to design environmentally benign processes for the synthesis of industrially useful molecules. [Pg.207]

Bismuth phosphomolybdate is an important catalyst which is used for the industrial ammonoxi-dation of propylene to make acrylonitrile. Dawson-type anions will crystallise with organic cations to give microporous cavity structures, for example, [ H3N(CH2)e NH3 jj PjWjgOgj-31120. These structures may have application as shape-selective catalysts. [Pg.299]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

One example has used a manganese porphyrin and iodobenzene encapsulated within a dendrimer to bring about shape-selective epox-idation of alkenes. The important aspect of catalysts is that the reactants can move rapidly to the active site, and that the products can be removed rapidly from the active site and expelled from the dendrimer. [Pg.144]

As was stated above, the very strong acidity (and probably together with the organophilicity of the pore wall) makes these salts very active catalysts in liquid-solid organic reaction systems. We wish to emphasize that this is the first example for the shape selective catalysis of heteropolyacids at least to our knowledge. [Pg.589]

When a microporous material, e.g. a zeolite, is used as a catalyst, only those molecules whose diameters are small enough to enter or pass through the pores can react and leave the catalyst. This is the basis for so-called shape-selectivity (Fig. 3.40). Reactant selectivity is encountered when a fraction of the feed molecules can enter the zeolite, whereas the other fraction cannot. For the molecules produced in the interior the same reasoning applies. The favoured products are the less bulky ones, i.e. those with diameters smaller than the pores of the zeolites. For instance, in the zeolite represented in Fig. 3.40 the production of p-xylene is favoured over the production of o- and m-xylenes. Also the bulkiness of the transition state can lead to a different. selectivity, as shown in the last example in Fig 3.40. [Pg.96]

As was shown here in some examples, the field of catalysis over zeolites, although marnre, is still very much alive. The chemists who work with the synthesis zeolites continue to be very creative, the focus now being placed on the synthesis of materials that can catalyze reactions other than the acidic ones and/or reactions of bulkier molecules, that is, synthesis of zeolites with larger micropores or with a very large external surface, such as nanosize and delaminated zeolites. New concepts related to the mode of action of zeolite catalysts continue to emerge, as shown here with the shape selectivity of the external surface. These concepts are particularly useful to scientifically design selective and stable catalysts. [Pg.248]

A good example for reactant shape selectivity includes the use of catalysts with ERI framework type for selective cracking of linear alkanes, while excluding branched alkanes with relatively large kinetic diameters from the active sites within the narrow 8-MR zeolite channels [61, 62]. Here molecular sieving occurs both because of the low Henry coefficient for branched alkanes and because of the intracrystalline diffusion limitations that develop from slow diffusivities for branched alkane feed molecules. [Pg.435]

Dewaxing is the final example of a reaction illustrated here with possibly multiple restricted transition state shape selectivity effects. Bifunctional zeolitic catalysts... [Pg.436]

Zeolite crystal size can be a critical performance parameter in case of reactions with intracrystalline diffusion limitations. Minimizing diffusion limitations is possible through use of nano-zeolites. However, it should be noted that, due to the high ratio of external to internal surface area nano-zeolites may enhance reactions that are catalyzed in the pore mouths relative to reactions for which the transition states are within the zeolite channels. A 1.0 (xm spherical zeolite crystal has an external surface area of approximately 3 m /g, no more than about 1% of the BET surface area typically measured for zeolites. However, if the crystal diameter were to be reduced to 0.1 (xm, then the external surface area becomes closer to about 10% of the BET surface area [41]. For example, the increased 1,2-DMCP 1,3-DMCP ratio observed with decreased crystallite size over bifunctional SAPO-11 catalyst during methylcyclohexane ring contraction was attributed to the increased role of the external surface in promoting non-shape selective reactions [65]. [Pg.447]


See other pages where Shape-selective catalysts, example is mentioned: [Pg.149]    [Pg.30]    [Pg.355]    [Pg.309]    [Pg.4]    [Pg.216]    [Pg.217]    [Pg.217]    [Pg.56]    [Pg.179]    [Pg.180]    [Pg.17]    [Pg.119]    [Pg.304]    [Pg.306]    [Pg.45]    [Pg.347]    [Pg.173]    [Pg.389]    [Pg.365]    [Pg.307]    [Pg.181]    [Pg.201]    [Pg.581]    [Pg.8]    [Pg.187]    [Pg.61]    [Pg.164]    [Pg.413]    [Pg.1433]    [Pg.1444]    [Pg.1456]    [Pg.240]    [Pg.249]    [Pg.105]    [Pg.5]    [Pg.463]   


SEARCH



Catalyst selection

Catalyst selectivity

Catalyst shaping

Selected Examples

Selective catalysts

Shape selection

Shape selectivity

Shape-selective catalysts, example catalytic material

Shaped catalysts

© 2024 chempedia.info