Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shape experimental evidence

A number of studies have focused on D-A systems in which D and A are either embedded in a rigid matrix [103-110] or separated by a rigid spacer with covalent bonds [111-118], Miller etal. [114, 115] gave the first experimental evidence for the bell-shape energy gap dependence in charge shift type ET reactions [114,115], Many studies have been reported on the photoinduced ET across the interfaces of some organized assemblies such as surfactant micelles [4] and vesicles [5], wherein some particular D and A species are expected to be separated by a phase boundary. However, owing to the dynamic nature of such interfacial systems, D and A are not always statically fixed at specific locations. [Pg.84]

Unfortunately, even for low molecular weight material it is difficult to obtain clear experimental evidence for a roughening transition [71]. This is mainly due to the fact that during growth the interface generally assumes a metastable shape and relaxation times are long and increase with crystal size. Therefore we certainly cannot expect a definitive answer for macromolecules. We shall therefore just make several comments which hopefully will be of use when reading the literature. [Pg.305]

In addition to size, an atomic orbital also has a specific shape. The solutions for the Schrodinger equation and experimental evidence show that orbitals have a variety of shapes. A second quantum number indexes the shapes of atomic orbitals. This quantum number is the azimuthal quantum number (1). [Pg.470]

Zembekov and Benito, 1995). Moreover, there is no experimental evidence of the T-shaped minimum. [Pg.126]

Abstract This chapter updates but mostly supplements the author s Ange-wandte Review,111 setting in context recent advances based on protein and nucleic acid engineering. Systems qualify as a true enzyme mimics if there is experimental evidence for both the initial binding interaction and catalysis with turnover, generally in the shape of saturation kinetics. They are discussed under five broad headings mimics based on natural enzymes, on other proteins, on other biopolymers, on synthetic macromolecules and on small-molecule host-guest interactions. [Pg.341]

It is necessary now to find out whether my theoretical conclusion is supported by experimental evidence in fact, there are many results for bulk polymerizations that indicate a first-order growth reaction. The experimental support that I seek would be found in the shape of the curves relating the conversion, Y, to the total received dose of radiation or to the time at a constant dose-rate. If the polymerizations are of zero order with respect to m, the conversion curves will be rectilinear instead of concave to the dose (or time) axis. Rectilinear conversion curves are actually much more common than first-order type curves, and some instances of this behaviour are listed in Table 1. In example 8 of Table 1 the experimental points are actually on a straight line, but a curve has been drawn past them. [Pg.351]

As you learned from the previous section, three quantum numbers—n, 1, and mi—describe the energy, size, shape, and spatial orientation of an orbital. A fourth quantum number describes a property of the electron that results from its particle-like nature. Experimental evidence suggests that electrons spin about their axes as they move throughout the volume of their atoms. Like a tiny top, an electron can spin in one of two directions, each direction generating a magnetic field. The spin quantum number (mj specifies the direction in which the electron is spinning. This quantum number has only two possible values or —... [Pg.140]

It is often difficult to distinguish restricted transition state shape selectivity from product shape selectivity due to the lack of clear experimental evidence that the pore geometry and local spatial environment are actually influencing the reaction rate [63]. The following test reactions are more likely be impacted by transition state selectivity effects. [Pg.435]

The simple collision theory for bimolecular gas phase reactions is usually introduced to students in the early stages of their courses in chemical kinetics. They learn that the discrepancy between the rate constants calculated by use of this model and the experimentally determined values may be interpreted in terms of a steric factor, which is defined to be the ratio of the experimental to the calculated rate constants Despite its inherent limitations, the collision theory introduces the idea that molecular orientation (molecular shape) may play a role in chemical reactivity. We now have experimental evidence that molecular orientation plays a crucial role in many collision processes ranging from photoionization to thermal energy chemical reactions. Usually, processes involve a statistical distribution of orientations, and information about orientation requirements must be inferred from indirect experiments. Over the last 25 years, two methods have been developed for orienting molecules prior to collision (1) orientation by state selection in inhomogeneous electric fields, which will be discussed in this chapter, and (2) bmte force orientation of polar molecules in extremely strong electric fields. Several chemical reactions have been studied with one of the reagents oriented prior to collision. ... [Pg.2]

Monosaccharides have many structural variations that correspond to local minima that must be considered. Acyclic carbohydrates can rotate at each carbon, and each of the three staggered conformers is likely to correspond to a local minimum. The shapes of sugar rings also often vary. Furanose rings usually have two major local minima and a path of interconversion. Experimental evidence shows a clear preference for only one chair form for some pyranose rings, but others could exist in several conformers. For exanqple, the and conformers must all be considered as possible structures for L-iduronate, as discussed by Ragazzi et al. in this book. [Pg.7]

In principle we could deconvolute the experimental spectrum with the instrumental lineshape, if that were known, to recover the true spectrum. In our example we have some good experimental evidence as to the form of the instrumental lineshape since the acetone signal is (apart from small carbon-13 satellites) a singlet, its experimental shape is just the instrumental lineshape convoluted by a Lorentzian of width l/(7rr2 ), where is the spin-spin relaxation time of the acetone protons. How can we use this experimental evidence to correct the imperfect experimental spectrum The simplest way to deconvolute one function fi uj) by another f2 ( ) is to Fourier transform the ratio of their inverse Fourier transforms ... [Pg.305]

Further experimental evidence of shape effects in absorption spectra of SiC particles is found in the data of Pultz and Herd (1966), who investigated infrared absorption by SiC fibers with and without Si02 coatings. Although these measurements were not mass-normalized, they show a strong absorption band at 795 cm-1 and a weaker band at 941 cm-1. If the fibers are approximated as ellipsoids with L2 = L3 = and Lx = 0 (i.e., a cylinder), then the ellipsoid equation (12.27) predicts absorption peaks for particles in air at frequencies where c = -1 and c = — oo. This corresponds to absorption bands at 797 and 945 cm-1 for the dielectric function of isotropic SiC, in excellent agreement with the experimental peak positions for the fibers. [Pg.365]

In the past, various resin flow models have been proposed [2,15-19], Two main approaches to predicting resin flow behavior in laminates have been suggested in the literature thus far. In the first case, Kardos et al. [2], Loos and Springer [15], Williams et al. [16], and Gutowski [17] assume that a pressure gradient develops in the laminate both in the vertical and horizontal directions. These approaches describe the resin flow in the laminate in terms of Darcy s Law for flow in porous media, which requires knowledge of the fiber network permeability and resin viscosity. Fiber network permeability is a function of fiber diameter, the porosity or void ratio of the porous medium, and the shape factor of the fibers. Viscosity of the resin is essentially a function of the extent of reaction and temperature. The second major approach is that of Lindt et al. [18] who use lubrication theory approximations to calculate the components of squeezing flow created by compaction of the plies. The first approach predicts consolidation of the plies from the top (bleeder surface) down, but the second assumes a plane of symmetry at the horizontal midplane of the laminate. Experimental evidence thus far [19] seems to support the Darcy s Law approach. [Pg.201]

Throughout the book, theoretical concepts and experimental evidence are integrated An introductory chapter summarizes the principles on which the Periodic Table is established and describes the periodicity of various atomic properties which are relevant to chemical bonding. Symmetry and group theory are introduced to serve as the basis of all molecular orbital treatments of molecules. This basis is then applied to a variety of covalent molecules with discussions of bond lengths and angles and hence molecular shapes. Extensive comparisons of valence bond theory and VSEPR theory with molecular orbital theory are included Metallic bonding is related to electrical conduction and semi-conduction. [Pg.184]

An application of the ROCS program has been reported recently (82). New scaffolds for small molecule inhibitors of the ZipA-FtsZ protein-protein interaction have been found. The shape comparisons are made relative to the bioactive conformation of a HTS hit, determined by X-ray crystallography. A followup X-ray crystallographic analysis also showed that ROCS accurately predicted the binding mode of the inhibitor. This result offers the first experimental evidence that validates the use of ROCS for scaffold hopping purposes. [Pg.127]

A third type of dose response relationship has been proposed, which is increasingly gaining acceptance, and this is the hormetic kind. This kind of dose response, for which there is experimental evidence, involves opposite effects at low doses, giving rise to a U-shaped or J-shaped curve (Fig. 2.11). That is, there may be positive or stimulatory beneficial effects at low doses. For example, some data indicate that at low doses of dioxin, the incidence of certain cancers in animals exposed is less than occurs in controls. Another example is alcohol (ethanol), for which there is evidence from a number of studies that low to moderate intake in man leads to lower levels of cardiovascular disease. Of course, high levels of intake of alcohol are well established to cause liver cirrhosis, various cancers, and also damage to the cardiovascular system. [Pg.26]

Shape and Conformation of Vitamin D. 11-Fluoro-l-a-hydroxyvitamin D, The Quest for Experimental Evidence of the Folded Vitamin D Conformation ... [Pg.476]

There is strong experimental evidence, but no agreement on effects [56] that S loading (and size, shape, density...) affects G/L transfer in slurry. For these uppermost important effects, two "theories" have been put forward s... [Pg.13]


See other pages where Shape experimental evidence is mentioned: [Pg.116]    [Pg.116]    [Pg.287]    [Pg.1295]    [Pg.106]    [Pg.36]    [Pg.96]    [Pg.95]    [Pg.577]    [Pg.381]    [Pg.282]    [Pg.166]    [Pg.45]    [Pg.700]    [Pg.158]    [Pg.264]    [Pg.631]    [Pg.238]    [Pg.287]    [Pg.359]    [Pg.191]    [Pg.66]    [Pg.263]    [Pg.136]    [Pg.633]    [Pg.10]    [Pg.354]    [Pg.167]    [Pg.925]    [Pg.134]    [Pg.681]    [Pg.123]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Experimental evidence

© 2024 chempedia.info