Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation crystal size

Why is it possible to separate crystal size from lattice distortion — Limited crystal size broadens every reflection by the same amount20. On the other hand, the higher the order of a reflection is, the higher is the smearing effect caused by lattice distortions. [Pg.121]

Etch reactivity variations crystal morphologies internal structure varieties (T)q)es "A," "B," or "C") inclusions percentages of nests and types of crystal packing and their percentages nest boundaries if nest crystals are different from others, describe separately. Crystal size, morphology, and abimdance variations within and among clinkers. [Pg.165]

Sepa.ra.tlon, Sodium carbonate (soda ash) is recovered from a brine by first contacting the brine with carbon dioxide to form sodium bicarbonate. Sodium bicarbonate has a lower solubiUty than sodium carbonate, and it can be readily crystallized. The primary function of crystallization in this process is separation a high percentage of sodium bicarbonate is soHdified in a form that makes subsequent separation of the crystals from the mother hquor economical. With the available pressure drop across filters that separate Hquid and soHd, the capacity of the process is determined by the rate at which hquor flows through the filter cake. That rate is set by the crystal size distribution produced in the crystallizer. [Pg.338]

Process. In each of the systems discussed above there is a need to form crystals, to cause the crystals to grow, and to separate the crystals from residual Hquid. There are various ways to accomplish these objectives lea ding to a multitude of processes that are designed to meet requirements of product yield, purity, and, uniquely, crystal size distribution. [Pg.338]

Although evidence exists for both mechanisms of growth rate dispersion, separate mathematical models were developed for incorporating the two mechanisms into descriptions of crystal populations random growth rate fluctuations (36) and growth rate distributions (33,40). Both mechanisms can be included in a population balance to show the relative effects of the two mechanisms on crystal size distributions from batch and continuous crystallizers (41). [Pg.345]

The dominant crystal size is given by = 3Gr. This quantity is also the ratio mJwhich is often given the symbol 2-(J) Prom the definition of the coefficient of variation given by equation 41, cv = 50% for an MSMPR crystallizer. Such a cp may be too large for certain commercial products, which means either the crystallizer must be altered or the product must be screened to separate the desired fraction. [Pg.350]

As an idealization of the classified-fines removal operation, assume that two streams are withdrawn from the crystallizer, one corresponding to the product stream and the other a fines removal stream. Such an arrangement is shown schematically in Figure 14. The flow rate of the clear solution in the product stream is designated and the flow rate of the clear solution in the fines removal stream is set as (R — 1) - Furthermore, assume that the device used to separate fines from larger crystals functions so that only crystals below an arbitrary size are in the fines removal stream and that all crystals below size have an equal probabiHty of being removed in the fines removal stream. Under these conditions, the crystal size distribution is characterized by two mean residence times, one for the fines and the other for crystals larger than These quantities are related by the equations... [Pg.351]

Crystallization generally involves the evaporation and subsequent cooling of a solution to the point of supersaturation, whereupon the formation of crystals takes place. Modern technology often focus on the control of crystal size, since product demands frequently are rigorous in this regard. The process of crystallization is often conducted in evaporators. As in the evaporation of salt and in the recovery of salt and glycerin in soap manufacturing, salt separators are used to remove crystallized materials as rapidly as it settles. [Pg.154]

After each peak has been described by the parameters of a model function, the convolution in Eq. (8.13) can be carried out analytically. As a result, equations are obtained that describe the effects of crystal size, lattice distortion, and instrumental broadening38 on the breadth of the observed peak. Impossible is in this case the separation of different kinds of lattice distortions. [Pg.129]

It is evident that with the discrete cycles of the non-flame atomizers several reactions (desolvation, decomposition, etc.) which occur simultaneously" albeit over rather broad zones in a flame (due to droplet size distributions] are separated in time using a non-flame atomizer. This allows time and temperature optimization for each step and presumably improves atomization efficiencies. Unfortunately, the chemical composition and crystal size at the end of the dry cycle is matrix determined and only minimal control of the composition at the end of the ash cycle is possible, depending on the relative volatilities and reactivities of the matrix and analyte. These poorly controlled parameters can and do lead to changes in atomization efficiencies and hence to matrix interferences. [Pg.102]

Ciystallization from solution is an important separation and purification process in a wide variety of industries. These range from basic materials such as sucrose, sodium chloride and fertilizer chemicals to pharmaceuticals, catalysts and specialty chemicals. The major purpose of crystallization processes is the production of a pure product. In practice however, a number of additional product specifications are often made. They may include such properties as the ciystd size distribution (or average size), bulk density, filterability, slurry viscosity, and dry solids flow properties. These properties depend on the crystal size distribution and crystal shape. The goal of crystallization research therefore, is to develop theories and techniques to allow control of purity, size distribution and shape of crystals. [Pg.2]

The experimental results reported in this paper demonstrate the ability of a flat-bottom hydrocyclone to separate the coarse fraction of ammonium sulfate crystals from a slurry which contains crystals of a wide size range. It appears that the grade efficiency curve, which predicts the probability of a particle reporting to the underflow of the cyclone as a function of size, can be adjusted by a change in the underflow diameter of the hydrocyclone. These two observations lead to the suggestion to use hydrocyclone separation to reduce the crystal size distribution which is produced in crystallisers, whilst using a variable underflow diameter as an additional input for process control. [Pg.130]

There is a clear need for other size classifiers which combine a high separation efficiency with flexibility and compactness. Hydrocyclones have a small volume, are simple in operation and are standard size classification equipment, for example in closed circuit grinding applications. The recent development of the flat-bottom hydrocyclone, which permits classification in the coarse size range, creates an additional motive to study the use of hydrocyclones for Crystal Size Distribution (CSD) control. Furthermore, throttling of a flat botom hydrocyclone does not necessarily provoke blockage but allows continuous control of its cut size when a controlled throttling valve is used. There is a clear incentive for its use in this application since it may provide an additional process input. [Pg.131]

Crystallization from solution is a widely utilized separation and purification technique in chemical industry. It is characterized by the formation of a spectrum of differently sized crystals. This spectrum, called the Crystal Size Distribution or CSD, is highly important for the performance of the crystallizer, the crystal handling equipment like centrifuges and dryers, and the marketability of the produced crystals. However, in many industrial crystallizers, the observed CSD s show large transients due to disturbances or are unstable because of the internal feedback mechanisms of the crystallization process ). The main limitation for effective CSD control was the lack of a good on-line CSD measurement device, but recent developments show that this hurdle is taken (2). [Pg.144]

Results for Commercial Operations The content of a-form was up to 99% and average size of the crystal was about 24-35 jum. The formation of 3-form crystal In commercial operation Induced considerable Increase of the viscosity of the suspension. The features of the semi-batch cooling crystallization process are as follows. Even if crystallization temperature is considerably lowered in order to avoid the formation of 3-form crystal, and also even if the feed solution is highly concentrated at high temperature above -SSSK, obtained crystal size is large enough to separate the solvent by centrifuge. [Pg.270]

In nanocrystaUine semiconductor films (commonly obtained in CD), the crystal size may be too small to support an appreciable space charge layer. Charges in that case are separated by differing kinetics between electron and hole injection into the electrolyte. The upcoming discussion on nonannealed films treats this in somewhat more detail. (Chapter 9 discusses PECs and their principles of operation more fully.)... [Pg.85]


See other pages where Separation crystal size is mentioned: [Pg.417]    [Pg.417]    [Pg.417]    [Pg.417]    [Pg.417]    [Pg.417]    [Pg.422]    [Pg.181]    [Pg.21]    [Pg.338]    [Pg.347]    [Pg.352]    [Pg.1750]    [Pg.116]    [Pg.87]    [Pg.420]    [Pg.421]    [Pg.143]    [Pg.269]    [Pg.491]    [Pg.121]    [Pg.442]    [Pg.301]    [Pg.218]    [Pg.42]    [Pg.63]    [Pg.158]    [Pg.325]    [Pg.329]    [Pg.747]    [Pg.37]   
See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Crystal size

Crystallization, separation

Separ crystallization

Separator sizing

Size separation

Size separators

© 2024 chempedia.info