Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semiconductor Fermi level pinning

The degree of surface cleanliness or even ordering can be determined by REELS, especially from the intense VEELS signals. The relative intensity of the surface and bulk plasmon peaks is often more sensitive to surface contamination than AES, especially for elements like Al, which have intense plasmon peaks. Semiconductor surfaces often have surface states due to dangling bonds that are unique to each crystal orientation, which have been used in the case of Si and GaAs to follow in situ the formation of metal contacts and to resolve such issues as Fermi-level pinning and its role in Schottky barrier heights. [Pg.328]

Singh P, Singh R, Gale R, Rajeshwar K, DuBow J (1980) Surface charge and specific ion adsorption effects in photoelectrochemical devices. J Appl Phys 51 6286-6291 Bard AJ, Bocarsly AB, Pan ERF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102 3671-3677... [Pg.294]

Manipulating surface states of semiconductors for energy conversion applications is one problem area common to electronic devices as well. The problem of Fermi level pinning by surface states with GaAs, for example, raises difficulties in the development of field effect transistors that depend on the... [Pg.69]

The conclusions from these considerations are that semiconductor photoelectrodes can be used to effect either reductions (p-type semiconductors) or oxidations (n-type semiconductors) in an uphill fashion. The extent to which reaction can be driven uphill, Ey, is no greater than Eg, but may be lower than Eg owing to surface states between Eqb and Eye or to an Inappropriate value of Ere(jox. Both Eg and Epg are properties that depend on the semiconductor bulk and surface properties. Interestingly, Ey can be independent of Ere(jox meaning that the choice of Ere(jox and the associated redox reagents can be made on the basis of factors other than theoretical efficiency, for a given semiconductor. Thus, the important reduction processes represented by the half-reactions (3)-(5) could, in principle, be effected with the same efficiency at a Fermi level pinned (or... [Pg.70]

Since the electron state density near the Fermi level at the degenerated surface (Fermi level pinning) is so high as to be comparable with that of metals, the Fermi level pinning at the surface state, at the conduction band, or at the valence band, is often called the quasi-metallization of semiconductor surfaces. As is described in Chap. 8, the quasi-metallized surface occasionally plays an important role in semiconductor electrode reactions. [Pg.44]

Simple calculation gives a comparable distribution of the electrode potential in the two layers, (64< >h/64( sc) = 1 at the surface state density of about 10cm" that is about one percent of the smface atoms of semiconductors. Figure 5—40 shows the distribution of the electrode potential in the two layers as a function of the surface state density. At a surface state density greater than one percent of the surface atom density, almost all the change of electrode potential occurs in the compact layer, (6A /5d )>l, in the same way as occurs with metal electrodes. Such a state of the semiconductor electrode is called the quasi-metallic state or quasi-metallization of the interface of semiconductor electrodes, which is described in Sec. 5.9 as Fermi level pinning at the surface state of semiconductor electrodes. [Pg.171]

Figure 5-41 illustrates the profile of electron level across the interfadal double layer of a semiconductor electrode (A) in the state of band edge level pinning and (B) in the state of Fermi level pinning. In Fig. 5-41 the cathodic polarization... [Pg.172]

Fig. S-41. Band edge levels and Fermi level of semiconductor electrode (A) band edge level pinning, (a) flat band electrode, (b) under cathodic polarization, (c) under anodic polarization (B) Fermi level pinning, (d) initial electrode, (e) under cathodic polarization, (f) imder anodic polarization, ep = Fermi level = conduction band edge level at an interface Ev = valence band edge level at an interface e = surface state level = potential across a compact layer. Fig. S-41. Band edge levels and Fermi level of semiconductor electrode (A) band edge level pinning, (a) flat band electrode, (b) under cathodic polarization, (c) under anodic polarization (B) Fermi level pinning, (d) initial electrode, (e) under cathodic polarization, (f) imder anodic polarization, ep = Fermi level = conduction band edge level at an interface Ev = valence band edge level at an interface e = surface state level = potential across a compact layer.
In the state of Fermi level pinning, the Fermi level at the interface is at the surface state level both where the level density is high and where the electron level is in the state of degeneracy similar to an allowed band level for electrons in metals. The Fermi level pinning is thus regarded as quasi-metallization of the interface of semiconductor electrodes, making semiconductor electrodes behave like metal electrodes at which all the change of electrode potential occurs in the compact layer. [Pg.174]

Figure 5-45 shows the differential capacity for an intrinsic semiconductor electrode of germanium estimated by calculation as a function of electrode potential. Here, the capacity is minimum at the flat band potential, Ea, where is zero. As the electrode potential shifts so far away from that the Fermi level at the interface may be dose to the band edge levels, Fermi level pinning is reaUzed both with A sc remaining constant and with Csc being constant and independent of the electrode potential. [Pg.176]

When the total overvoltage ti is distributed not only in the space charge layer t)8c but also in the compact layer tih, the Tafel constants of a and a each becomes greater than zero and the Tafel constants of a and each becomes less than one. In such cases, Kiv) and ip(T ) do not remain constant but increase with increasing overvoltage. Further, if Fermi level pinning is established at the interface of semiconductor electrodes, the Tafel constant becomes dose to 0.5 for... [Pg.264]

Fig. 8-24. Redox reaction currents via the conduction and the valence bands of semiconductor electrode as functions of electrode potential of semiconductor anodic polarization corresponds to Figs. 8-20, 8-21 and 8-22. i (i )= anodic (cathodic) current in (ip) = reaction crnrent via the conduction (valence) band BLP = band edge level pinning FLP = Fermi level pinning. Fig. 8-24. Redox reaction currents via the conduction and the valence bands of semiconductor electrode as functions of electrode potential of semiconductor anodic polarization corresponds to Figs. 8-20, 8-21 and 8-22. i (i )= anodic (cathodic) current in (ip) = reaction crnrent via the conduction (valence) band BLP = band edge level pinning FLP = Fermi level pinning.
Fig. 8-27. Polarization curves for transfer of redox electrons at n-type and p-type semiconductor electrodes solid curve near Egaxa = reaction with the Fermi level of redox electrons dose to the valence band edge dashed curve near F redok = reaction with the Fermi level of redox electrons dose to the conduction band edge dot-dash curve (FLP)= reaction in the state of Fermi level pinning. Fig. 8-27. Polarization curves for transfer of redox electrons at n-type and p-type semiconductor electrodes solid curve near Egaxa = reaction with the Fermi level of redox electrons dose to the valence band edge dashed curve near F redok = reaction with the Fermi level of redox electrons dose to the conduction band edge dot-dash curve (FLP)= reaction in the state of Fermi level pinning.
Fig. 9-16. Polarization curves of anodic oxidative dissolution and cathodic reductive dissolution of semiconductor electrodes of an ionic compound MX iiixcp) (iMxh )== anodic oxidative (cathodic reductive) dissolution current solid curve = band edge level pinning at the electrode interface, dashed curve = Fermi level pinning. Fig. 9-16. Polarization curves of anodic oxidative dissolution and cathodic reductive dissolution of semiconductor electrodes of an ionic compound MX iiixcp) (iMxh )== anodic oxidative (cathodic reductive) dissolution current solid curve = band edge level pinning at the electrode interface, dashed curve = Fermi level pinning.
When the electrode interface is in the state of Fermi level pinning, however, the potential of the compact layer changes with the electrode potential hence, the equilibrium of the adsorption-desorption of protons on semiconductor electrodes depends on the electrode potential in the same way as that on metal electrodes. [Pg.317]

In the active state, the dissolution of metals proceeds through the anodic transfer of metal ions across the compact electric double layer at the interface between the bare metal and the aqueous solution. In the passive state, the formation of a thin passive oxide film causes the interfadal structure to change from a simple metal/solution interface to a three-phase structure composed of the metal/fUm interface, a thin film layer, and the film/solution interface [Sato, 1976, 1990]. The rate of metal dissolution in the passive state, then, is controlled by the transfer rate of metal ions across the film/solution interface (the dissolution rate of a passive semiconductor oxide film) this rate is a function of the potential across the film/solution interface. Since the potential across the film/solution interface is constant in the stationary state of the passive oxide film (in the state of band edge level pinning), the rate of the film dissolution is independent of the electrode potential in the range of potential of the passive state. In the transpassive state, however, the potential across the film/solution interface becomes dependent on the electrode potential (in the state of Fermi level pinning), and the dissolution of the thin transpassive film depends on the electrode potential as described in Sec. 11.4.2. [Pg.382]

A drastic decrease of photovoltage in UHV is obtained by introduction of surface states at the semiconductor surface. Particle bombardement of cleaved (0001) faces leads to preferential sputtering of the chalcogenide. The metal is reduced and new electronic bandgap states are formed at the surface. As a consequence a Fermi level pinning effect occurs which results in a smaller shift of EB due to halogen adsorption and decreased photovoltages and consequently an increased double layer potential drop (Fig. 4). [Pg.129]

The surface concentration of electrons depends on the potential drop (band bending) in the semiconductor, and in the absence of complications due to surface state charging (Fermi level pinning), it is given by (cf. equation (8.5))... [Pg.238]

Finally, interface states, that is, electronic states localized at the interface, are always present in the case of semiconductors and may be very important in fixing the Fermi level at the interface (Fermi level pinning) and modify the barrier height. In the case of organic solids in general, and of CPs, the existence of a surface does not imply that of dangling (i.e.,... [Pg.607]

It is evident that this treatment is complementary to that given above for the situation in which the dominant equilibrium was that between the bulk and surface of the semiconductor and these two physically very different situations must be carefully distinguished, especially in view of the fact that the term "Fermi-level pinning discussed above actually bears both these meanings in the literature. In this review, we will, therefore, explicitly distinguish two types of pinning. [Pg.91]

At higher densities of surface states, it may be expected that the emptying and filling of surface states will cause a significant change in the potential within the depletion layer. Provided the dominant kinetics are those between surface state and semiconductor interior, we may then analyse the situation as a case II Fermi-level pinning problem. The total potential dropped in the interfacial region... [Pg.114]


See other pages where Semiconductor Fermi level pinning is mentioned: [Pg.2730]    [Pg.417]    [Pg.2730]    [Pg.417]    [Pg.599]    [Pg.215]    [Pg.225]    [Pg.244]    [Pg.65]    [Pg.69]    [Pg.28]    [Pg.172]    [Pg.253]    [Pg.385]    [Pg.407]    [Pg.874]    [Pg.159]    [Pg.182]    [Pg.310]    [Pg.126]    [Pg.127]    [Pg.99]    [Pg.183]    [Pg.212]    [Pg.246]    [Pg.392]    [Pg.87]    [Pg.90]    [Pg.436]    [Pg.244]   
See also in sourсe #XX -- [ Pg.1025 ]




SEARCH



Fermi level

Fermi level pinning

Fermi levell

Fermi levels semiconductor

Fermi pinning

Pin, pins

Pinning

© 2024 chempedia.info