Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selective ion monitoring SIM,

In a process similar to that described in the previous item, the stored data can be used to identify not just a series of compounds but specific ones. For example, any compound containing a chlorine atom is obvious from its mass spectrum, since natural chlorine occurs as two isotopes, Cl and Cl, in a ratio of. 3 1. Thus its mass spectrum will have two molecular ions separated by two mass units (35 -i- 2 = 37) in an abundance ratio of 3 1. It becomes a trivial exercise for the computer to print out only those scans in which two ions are found separated by two mass units in the abundance ratio of 3 1 (Figure 36.10). This selection of only certain ion masses is called selected ion recording (SIR) or, sometimes, selected ion monitoring (SIM, an unfortunate... [Pg.259]

Selected-ion monitoring (SIM). Describes the operation of a mass spectrometer in which the ion currents at one (or several) selected m/z values are recorded, rather than the entire mass spectrum. The use of the terms multiple-ion detection (MID), multiple-ion (peak) monitoring (MPM), and mass fragmentography are not recommended. [Pg.436]

Retention times and suggested ions for selected ion monitoring (SIM) of TBDMS derivatives of AAs are given in Table 9.1 and the GC separation is shown in Figure 9.1. Amino acids should be derivatized prior to separation. The TBDMS derivatives are preferred and stable for at least 1 week. [Pg.242]

Selected ion monitoring (SIM) Describes the operation of a MS in which the ion currents of one or several selected m/z values are recorded, rather than the entire mass spectrum. [Pg.373]

In conventional mass spectromefiy, quantitative determinations are often carried out by using selected-ion monitoring (SIM), i.e. by monitoring the intensities of a small number of ions characteristic of the analyte of interest (see Section 3.5.2.1 below). [Pg.69]

What are the potential advantages of selected-decomposition monitoring (SDM) over selected-ion monitoring (SIM) ... [Pg.73]

In this chapter, the main aspects of mass spectrometry that are necessary for the application of LC-MS have been described. In particular, the use of selected-ion monitoring (SIM) for the development of sensitive and specific assays, and the use of MS-MS for generating structural information from species generated by soft ionization techniques, have been highlighted. Some important aspects of both qualitative and quantitative data analysis have been described and the power of using mass profiles to enhance selectivity and sensitivity has been demonstrated. [Pg.89]

This selected ion monitoring (SIM) approach typically has greater applicability in cases where sensitivity is more of a concern. Kiehl and Kennington developed a swine liver confirmatory method for tilmicosin that confirmed structure based upon monitoring a parent ion and two additional structural fragment ions. A discussion of the validation requirements for confirmatory methods is provided in Section 6. [Pg.315]

The method using GC/MS with selected ion monitoring (SIM) in the electron ionization (El) mode can determine concentrations of alachlor, acetochlor, and metolachlor and other major corn herbicides in raw and finished surface water and groundwater samples. This GC/MS method eliminates interferences and provides similar sensitivity and superior specificity compared with conventional methods such as GC/ECD or GC/NPD, eliminating the need for a confirmatory method by collection of data on numerous ions simultaneously. If there are interferences with the quantitation ion, a confirmation ion is substituted for quantitation purposes. Deuterated analogs of each analyte may be used as internal standards, which compensate for matrix effects and allow for the correction of losses that occur during the analytical procedure. A known amount of the deuterium-labeled compound, which is an ideal internal standard because its chemical and physical properties are essentially identical with those of the unlabeled compound, is carried through the analytical procedure. SPE is required to concentrate the water samples before analysis to determine concentrations reliably at or below 0.05 qg (ppb) and to recover/extract the various analytes from the water samples into a suitable solvent for GC analysis. [Pg.349]

To determine the residue levels of dinitroaniline herbicides, GC/NPD or GC/ECD is used in general. An aliquot of GC-ready sample solution is injected into the gas chromatograph under the conditions outlined below. Further confirmatory analysis is carried out using gas chromatography/mass spectrometry (GC/MS) in the selected-ion monitoring (SIM) mode. [Pg.393]

The most widely regarded approach to accomplish the determination of as many pesticides as possible in as few steps as possible is to use MS detection. MS is considered a universally selective detection method because MS detects all compounds independently of elemental composition and further separates the signal into mass spectral scans to provide a high degree of selectivity. Unlike GC with selective detectors, or even atomic emission detection (AED), GC/MS may provide acceptable confirmation of the identity of analytes without the need for further information. This reduces the need to re-inject a sample into a separate GC system (usually GC/MS) for pesticide confirmation. Through the use of selected ion monitoring (SIM), efficient ion-trap or quadrupole devices, and/or tandem mass spectrometry (MS/MS), modern GC/MS instruments provide LODs similar to or lower than those of selective detectors, depending on the analytes, methods, and detectors. [Pg.762]

The instrument scan mode called selected reaction monitoring (SRM) is generally used for quantitative applications. SRM is similar to selected ion monitoring (SIM) in single quadrupole MS. The difference is that a product ion from the decomposition reaction in the collision cell is measured instead of a single ion formed in the... [Pg.831]

LC/MS is used as a multi-residue analytical method. The recovery of imidacloprid from tomato was 90-105% for 0.05 and 0.5mgkg . The LOD for imidacloprid was < 10 pg kg in the full-scan mode and 1 pg kg in the selected-ion monitoring (SIM) mode. ... [Pg.1136]

GC-MS operated in electron impact (El) mode was only sporadically used for the determination of some UV filters such as 4-MBC, EHMC, and OC. Separation was achieved on a 60 m x 0.25 mm i.d. DB-5 column, with 0.25-pm film thickness. For quantification of the compounds, data acquisition was performed in selected ion monitoring (SIM) mode recording three characteristic ions per compound. GC-MS allowed the differentiation between the two isomers (cis/trans) for 4-MBC and EHMC. [Pg.53]

Once the analyte has been identified and characterized, it is possible to determine its quantity. This is important information in a lot of fields and in cultural heritage in particular. There are specific experimental set-ups for quantitative analysis, such as selected ion monitoring (SIM) and multiple reaction monitoring (MRM). By considering that MS is highly sensitive, it is possible to carry out quantitative determinations of compounds at trace level.[7,8]... [Pg.40]

GC/MS separation of mixtures of the compounds are usually performed on capillary columns with low and mid polarity and a length in the range of 30 50 m, with a total separation time of20 40 min, and temperature ramping from 40 to 300 °C. Total ion current (TIC) profiles are often obtained using ion trap or quadrupole analysers. Quantification is performed by selected-ion monitoring (SIM) detection using calibration curves. [Pg.194]

Isotope dilution gas chromatography-mass spectrometry has also been used for the determination of ppb of total chromium in seawater [181-183]. The samples were reduced to ensure Cr111 and then extracted and concentrated as tris (l,l,l-trifluoro-2,4-pentanediono) chromium (III) [(Cr(tfa)3>] into hexane. The Cr(tfa)2 mass fragments were monitored into a selected ion monitoring (SIM) mode. [Pg.158]

The MS detection system can be such that the full mass spectrum is observed (at least five peaks) or just selected ions monitored (SIM) with three or four identification points. For some analyses, it may be necessary to use MS-MS" techniques [8]. In LC-MS, it is important to make sure that ionization of the compounds of interest has been achieved. For all of these approaches, the criteria for matching of the analyte with the standard should be established during validation studies. [Pg.68]


See other pages where Selective ion monitoring SIM, is mentioned: [Pg.403]    [Pg.337]    [Pg.207]    [Pg.221]    [Pg.70]    [Pg.112]    [Pg.5]    [Pg.207]    [Pg.57]    [Pg.438]    [Pg.736]    [Pg.825]    [Pg.1148]    [Pg.1185]    [Pg.353]    [Pg.401]    [Pg.459]    [Pg.25]    [Pg.247]   
See also in sourсe #XX -- [ Pg.235 , Pg.245 , Pg.247 ]




SEARCH



SIM

SIM, selected ion monitoring

SIMS

Selected ion monitoring

© 2024 chempedia.info